Sense C Coding
with CARM-202

Neulog

Sense C Coding
with CARM-202

113

© All rights reserved.

The material in this book may not be copied, duplicated, printed, translated, re-
edited or broadcast without prior agreement in writing.

For further information contact info@neulog.com

W www.neulog.com H

Contents

Chapter 1 — Control and RODOTS........ccciiiieiice et sre e enes 1
11 (0] 010 SR PU PSRRI 1
1.2 (@00 0110 IS YA (=1 TSRS 2
1.3 SENSE QULONOMIOUS.ueiitieitiietie ettt ettt sttt ettt et e e sie e e be e s be e e be e sbe e e abeesseeebeessneebeeanneas 3
1.4 CARM-202 C COING UNIT....cueiiiiiieiieieesie e sie e e et ste e a e ae e ssaesesnaesreeeeanaenseens 4
1.5 (O -V [0 U - To -SSRSO 4
Experiment 1.1 — Serial COmMMUNICATIONcccoviiiiiiiieie et 5
1.1.1 Classification of communication MethodS............ccooiiiiiiiriiie s 5
1.1.2 Serial asynchronous COMMUNICALIONccveiueeieieerieeiesieesieesee e e ste e e sreesae e reesae e sreeseeenes 6
I NS T4 1 oo Lo [TSRS 9
Experiment 1.2 — Communication With SENSE............ccociiiiiiiiie e 21
0 R oo V=1 (o I T g [0 I (o] o SR PRTT TSRS 25
1.2.2 Forward and DaCKWAIT...........cc.ooiiiiiiiiiiiiiieee e 27
1.2.3 Turning [eft and rIgNT.........oooi e 28
1.2.4 Rotating 1eft and Fght..........co oo nre s 29
1.2.5 Deviating left and Mgtoo i 29
1.2.6 Challenge exercises — MOVING IN @ SQUAIE.......cc.eiuereerueeiereesieeeeseesseeeeseesseesesseesseeeesses 31
Experiment 1.3 — INtEractivVe PrOgIramS.......cooiiiiiieiiiie sttt sttt nne e 32
1.3. 1 THE SENSE SENSOISuitiiiiiiieiieiesie st st ste sttt ettt st st b ettt ettt bbb et e e e e 33
1.3.2 Moving towards a wall and SLOPPINGceveiieiiiieiee e 35
1.3.3 Printing front SENSON VAIUESc.ecviiieieiie ettt te e sae e nneas 37
1.3.4 SENSE t0 @Wall QN STOP ..c.veiiiiiiiiieiieie ettt et 40
IR TR T =1 0 To | 1S3 oo o PSSR SSSSS 42
1.3.6 Challenge exercise — Moving to a wall and Dackccooeveiiiniiiiin e, 42
Experiment 1.4 — Movement Along a BIack LiNe ..o, 43
1.41 The SENSE DOIOM SENSOKcviiiiiiiiitieieitiesiee ettt sttt se e st sbeesbeeneenreas 43
1.4.2 Moving to a black 1ine and SLOPPING........ecveiiereiiieieerr e nneas 44
1.4.3 Moving along a black lINEcouiiiiiiii s 46
1.4.4 Printing SENSON VAIUESccvviiiieieiie st eite sttt tee e ste e taesae e et ssaanaesraesteenaesnaenneeneenneas 49
1.45 SENSE to ablack liN€ and STOPcoiieiiiiiiiee e 52
1.46 Movingto ablack line in an endless 100Dcccvevviieireieiieeie e 53
1.4.7 Moving between two BIACK TINESc.ooiiiiiiiee e 54
1.4.8 Challenge exercise — Between awall and a line (1)ccoovevveieniesieie e 54
1.49 Moving along a bBIack TINEcouiiiiiiii s 55
1.4.10 Moving along a black liN€ and STOPcc.ecveiieieiieciece e 57
1.4.11 Challenge exercise — Along a complex black line...........cccooeiiiieiiniiien 59
Experiment 1.5 — Movement AlONG WallS ..o 60
151 MoVvement aloNg WAlIS.........ooiiiiiiiiiiee ettt nneas 60
1.5.2 The SENSE right frONt SENSOFccveivieiiiie ettt sraesae e nnes 61
1.53 MoVvING aAloNG WallSc.ooomeiiieieee e 62

1.5.4 Printing SENSON VAIUESccviiiieieiiesieeitestie e e ettt stesee e sae et este e e sraesteenaesnaesaaeneenneas 64

155 MovINg aAloNg WallSc..ooeiiiiiee e 67
1.5.7 Challenge exercises — Moving along Walls.............cccevviiiiiiieiiesese e 69
Challenge 1.6 — COUNTING.......coiiiiiiie ittt st sbesse e sreenbeeseesbeesbeeneenreas 70
Challenge 1.7 — AUtOMALIC MOVEMENT.........ccviiieiieieee et se et raesaeeneenneas 70
(@ g T 1| (=T o[- T IR e I To] o1 PSR TRSSSSR 70
Challenge 1.9 — L0OPS aNd PrOCEAUIES.cceeiviiieiiieiesiiesiienieeieestee et see e teeste e e sbeesaesneesneas 71
Challenge 1.10 — ""Don’t touch mMe™ robOt............coo i 71
Challenge 1.11 — RODOLS IN @ CONVOYc.viiuiiiiieiiiiesieeie e seesie e sae e sasanae e steesaesnaesaeeneennens 71
Challenge 1.12 — Movement in @ labyrinth............coovoiiiiiicc e 72
Challenge 1.13 — EXITING @ CITCIEooiiieiieiee e 73
Challenge 1.14 — Moving @loNg COMTIAOTSccuiiiiiieieiie e 73
Chapter 2 — Brain UNITS........coiiiiiiii sttt ettt e e e e teenaesnaesaeennenneas 74
2.1 BAIN UNIES ...ttt bttt et bbb bt a b et e e 74
2.2 NeULO0Qg SENSOIS @S DIain UNITScceeiiiieiie et 75
EXPEriment 2.1 — SOUNM SENSOKoiuiiiiiiiiiiieitesiie sttt sttt sttt ae et besreesbeenaeaneenee e 76
2.1.1 Challenge exercise — Wait TOr SOUNGc.oouiiiiiiiiiiiee e 79
EXPEriment 2.2 — IMOTION SENSOTcc.uiiuiiiiiiiieiesiie ettt sttt bbb sbe b e s e sbeenaesneensens 80
2.2.1 Challenge exercise — Moving in @ diStanCe FaNQE........ccveruvreerieeriesiieseerieseesreeeeseeseeeeessens 84
Experiment 2.3 — Brain Tracking UNit ... 85
0 T R | G I - U3 1 OSSP URPR PP 85
2.3.2 Brain traCKing UNItooiiiiiiiiieiee ettt nbe e nneas 86
2.3.3 Challenge exercise — Tracking a robot with IR transmitter............cccccevvvieiieiesiese e, 89
Experiment 2.4 — Brain GriPPEr ANooiiiiiiiieeie ettt ae et ee e ste e sneessens 90
Pt R = T - U] oo o] o 1= = Ut 1 ST SSSSS 90
2.4.2 Challenge exercises — The SENSE with gripper armccccooevernniniesienesie e 93
Chapter 3 — Autonomous Vehicle Challengesccoeiiiiiiiiiii e 94
3.1 AULONOMOUS VENICIES ...ttt sttt e nee e 94
3.2 PrOgramMING TIPS, .. eeveiieiieeite ettt e e e et e et e s e e ste e e e e seesteenaesseesseeneeaneenneeneennens 94
Challenge 3.1 — AloNg BIACK TINESc.ooiiiiiieee e 95
3.1.1 Leftand right along a black liNecooiveiiiii e 95
3.1.2 Smooth movement along a black HNe...........ccoiiiiiiiie e 95
3.1.3 Adding FOrward MOVEMENT.........c.coiiieiieieeie et seese e ste e e e e e esteenaessaesaeeneenneas 96
3.1.4 Along a black line with a stop in front of an obstacle ..., 97
Challenge 3.2 - AGV — Automatic Guided Vehicle ... 98
Challenge 3.3 — AGV Detween STatioNS...........cooiiiiiiiiieei s 100

Challenge 3.4 — Along a building DIOCK............coiveiie e 101

3.4.1 Leftand right @long WallSooiiiiiiii e e 102
3.4.2 Smooth movement along a black lINe...........ccvoeiiieii i 103
3.4.3 Adding FOrWard MOVEMENT.........coiiiiiiieiieie ettt sneenae e 103
3.4.4 Alongawall with a stop in front of an obstaclecccccvevviieviecic s, 105
Challenge 3.5 — Along a building block and bypass Cars..........cccereiiiiiienene e 106
Challenge 3.6 — AUtONOMOUS MUSEUM QUAKTccviiieireie e eie s sie e ste e see e e ens 107
Challenge 3.7 — Along a building block with Stop SIgNccoveiiiieie e 108
Challenge 3.8 — Along a building block with stop for pedestrian...........c.cccocvovivieiieciic e, 108
Challenge 3.9 — Building bIoCK guardcooo s 109
Challenge 3.10 — TWo buildings QUAKTcooieiieiiiiesece e 110
Challenge 3.11 — TaXi AFIVEEccieiieeieeiecie ettt e e e raesteeneesseesaeeneenreeneenes 111
Challenge 3.12 — Taxi driver With PaSSENGENccciiiiiiiieiierie et 112

Challenge 3.13 — Home vacuum Cleaner roDOt...........cooviiiieiiiieee s 113

Chapter 1 — Control and Robots

1.1 Robots

The world today is a world of embedded computer systems. We find them in media systems, watches,
phones, remote control, cars, and many more electronics. A few years ago, we did not see terms such
as 'wearable computing' or 'internet of things'.

Everyday a surprising new product or application appears and months later, we cannot realize how
we lived without it. Modern systems are based more and more on machine learning and artificial
intelligence.

The robotic systems, part of the embedded computer system, perform independent activities like
search, manipulation, identification, activation, protection and so on.

Many systems combine a certain kind of artificial intelligence in operating and communication
between machines.

The robotic system includes the controller, building components, wheels, gears, motors, sensors, and
more.

Each robotic system includes a controller that allows it to operate in accordance with different
operating programs. The robot developer writes these programs on a computer and forwards them to
the controller.

Building a robotic system creates a challenge to acquire knowledge in various technology areas
(electronics, computers, mechanics, electricity, etc.).

There are many types of robots such as arm robots, mobile robots, walking robots and more.

The SENSE robots are a series of robots and "brain™ units for study, programming and making robots
with wide variety of robot applications.

The sense autonomous is a robot which enables us to program many robot applications and functions
such as movement on a line, movement along walls, tracking, AGV (Automatic Guided Vehicle),
autonomic car, autonomic guard vehicle, autonomic taxi driver, environment monitoring, car
manipulation and more. All these applications are described as exercises in this book.

1.2 Control systems

A robot is a computerized control system.

A "Control system™ may be defined as a group of components, which can be operated together to
control multiple variables, which govern the behavior of the system.

Examples:

= Air-conditioning systems control the temperature in the room.

= A greenhouse control system controls temperature, humidity, light, and irrigation.

= A speed control system maintains a steady motor speed regardless of the changing load on the
motor.

A light control system can maintain a steady level of light, regardless of the amount of available
sunlight. The control system turns lamps ON or OFF according to the requirements.

Three basic units are in every computerized control system:

1. Input unit - the unit that reads the system sensors like temperature, light, distance, touch
switch, etc. and feeds information into the control unit.

2. Control unit — the "BRAIN" of the control system, which contains the system program in its
memory and performs the program instructions and processes the received data.

3. Output unit — the unit that operates the system actuators such as motors, lamps, pump, and fan
as the results of the inputs and the program "decisions".

Inputs I:> Control unit I:> Outputs

Figure 1-1

The control unit is connected to a computer for programming and downloads a program to the control
unit flash memory.

Disconnecting the control unit from the computer and connecting a power source such as a battery to
it will create an independent system

1.3 SENSE autonomous

SENSE autonomous is a mobile robot for applications such as:

= Movement along black line or white line.

= Movement along walls or in a labyrinth.

= Autonomous vehicle such as: AGV, autonomous car, autonomous guard vehicle, autonomous
taxi driver, autonomous manipulator.

= Following a moving body holding IR transmitter using tracking module.

= Environmental monitoring and measurement robot with NeuLog sensors.

The SENSE autonomous has the following built in:

Base unit

3 connectors for NeuLog sensors or brain units

5 IR range sensors

1 line sensor

Pivot wheel

2 motors with wheels

A controller for the base sensors, motors, and independent operation
A flash memory for the user programs

USB connector for connection to PC or MAC

Right back sensor \

/ Left back sensor

[__]

& sense

\ Left front sensor

Front sensor

Right front sensor

Bottom sensor

The sense autonomous comes with an adapter for external battery. Such battery can be a standard
Power Bank with USB outlet.

You may also have the NeuLog battery module BAT-202, which can be plugged
directly into one of the SENSE sockets.

When connecting such battery to the sense autonomous and disconnecting it from the
PC, the sense autonomous becomes an independent robot running on its internal
program in its flash memory.

In this book, we shall call the SENSE autonomous in short SENSE.

4

1.4 CARM-202 C coding unit

The CARM-202 is a C coding unit of the Sense and Neulog series. It is based on the ARM Cortex
M3 microcontroller. This microcontroller belongs to the ARM family, which is the leading family of
microprocessors and microcontrollers in the world.

CARM-202 is a C language coding unit with 8 switches and 8 LEDs
housed in a rigid plastic packaging and colored label.

NeulLog

CARM-202 can be also used as a stand-alone module for ARM | AaRAAAAA
microcontroller and for C language programming.

The module has two connectors for communication with NeulLog
sensors or with brain 1/O units. The module includes flash memory for
programs.

The CARM-202 can be powered by the NeuLog battery module or by
a USB power source.

Plugging CARM-202 into one of the SENSE sockets turns the SENSE to be its slave and controlled
by it.

1.5 Clanguage

C is a coding language for creating machine programs. These machine programs are fast and work
directly with the system hardware components and not through interpreters as the programs above
do.

Because its efficiency and simplicity, this language has become popular for developing software for
microprocessors and microcontroller embedded systems (or for short, embedded systems).

The book 'C coding with CARM-202" describes and exercises all about programming in C language
with CARM-202.

It is important to exercise the 'C coding with CARM-202" book (the first experiment at least) before
exercising the experiments in this book.

Experiment 1.1 — Serial Communication

Objectives:

= Classification of communication methods.
. Serial asynchronous communication.

. UART and USART.

] ASCII code.

= Communication with PC.

Equipment required:

= Computer
. CARM-202 C coding unit

Discussion:

1.1.1 Classification of communication methods

In communication between computers, the computers are connected to each other by communication
lines. At each stage of the communication, there is a transmitting computer and a receiving computer.
The transmitter transmits information through an output port and the receiver receives that
information through an input port.

It is possible for a transmitting computer to transmit and then switch into receiving condition and vice
versa. No computer can "see™ what is happening in the other computer. Computers can only read
information, which is placed on their input ports. That is the reason why a part of the transferred
information consists of signals concerning the status of the transmitting and the receiving computer,
signals such as: "ready to receive", "receive a message", "end of message" etc.

The various communication methods are classified in three basic groups:

a) Synchronous and asynchronous:

In synchronous communication, the computers are connected to a mutual line, which supplies
synchronization signals to them both. The synchronization signal enables the computers to know
when to transmit and when to expect a message through the communication lines. Each computer,
before transmitting a message, awaits the appearance of the synchronization signal, and only then
starts transmitting. A computer, which is due to receive a message, awaits the appearance of the
synchronization signal and only then collects the information from its input port lines.

In asynchronous communication, we circumvent the use of a synchronization pulse line and a pulse
generator. On the information lines, we transmit a start signal at the beginning of each message. The
receiving computer awaits the reception of such a signal. After locating it, the receiving computer
collects the message, which follows that signal. This method of communication is the most commonly
used.

b) Parallel and serial:

In parallel communication, we transmit the information in parallel form. A byte of 8 bits is transmitted
through a cable of 8 wires. Each bit is transmitted on a separate wire simultaneously. This method
requires a cable with a large number of wires.

In serial communication, we use a small number of wires. The byte is transmitted through one line,
bit by bit. The transmitter and receiver must both be synchronized to the same communications
frequency.

¢) Polling or interrupts:

The problem in communication is in recognizing when the dialogue begins. One of the methods to
overcome this obstacle is to determine one of the computers as "MASTER" and the others as
"SLAVES". The master always initiates the communication. It turns to the slave and asks whether it
has any information to transmit. It waits a certain time to receive a message from the slave. If the
slave does not answer within that time, then the master returns to its main program.

The above procedure is performed at pre-determined regular intervals. When the slave has a message
to transmit, it waits for the master to turn to it and when this happens, the slave answers by
transmitting an opening message. The master reacts and the dialogue takes place. This method is
called "communication by polling™.

Another method to start a conversation is by interrupts. We use input ports with a strobe line (STB).
When one computer wishes to talk to another, it sends a message on its own output port, together
with a strobe pulse. An input port collects the message and performs an interrupt request in the
receiving computer. The receiver executes the interrupt program, which handles the received
message.

This method is quick and convenient although it requires the use of adequate ports and interrupt
programs.

Another expression in communication is "handshake". This means that the transmitter of a message
awaits an acknowledgement of it reception by the receiver. Without such acknowledgement, the
transmitter does not continue with the program.

1.1.2 Serial asynchronous communication

This is the most popular method of communication in microcomputer systems. In this method, the
communication line is minimal and may consist of two or three wires only. It is possible to transmit
and to receive through telephone wires (with the help of an interface unit called a modem) and even
through a wireless connection.

Serial communication is a method in which a byte of 8 bits is translated into a series of serial pulses,
zeros and ones, which are transmitted through the communication line. The receiver knows the length
of time of each pulse transmitted by the transmitter. In serial asynchronous communication, there is
a problem in identifying the start of each byte. The following procedure was therefore determined.

Start bit:

The normal status of the line is "high". Before each byte which is transmitted in a serial form, a'0' bit
should be transmitted for the same period of time which is required for the transmission of each of
the other bits. This is called "start bit". The receiver identifies the beginning of the transmission of a
character by identifying the transition from '1' to '0".

Data bits:

At the end of the transmission of the start bit, the data bits are transmitted, one after the other. The
transmission time of each bit is equal to that of the other bits. Since the receiver knows when the
transmission starts, it is able to time the sampling of the data bits in order to overcome the problem
of transients.

Parity bit:

Sometimes we use the eighth bit of the data bits as a parity bit, which is used by the receiver to check
the accuracy of the data received by it. The value of the bit ('0' or '1") is determined according to the
number of 1's in the data byte. There are two ways to determine this: "even parity" and "odd parity".
In "even parity"”, the number of 1's, including the parity bit, should be even. For example, if there are
three 1's in a byte, then the transmitter determines the parity bit as '1". If there are four 1's, then the
parity bit will be '0".

In "odd parity"”, the number of 1's, including the parity bit, should be odd.

Stop bits:

At the end of each byte, bits of logical 1's are transmitted (usually 2). These bits are used to transfer
the line to its normal status for a period of time, which enables the receiver to perform primary
processing of the information collected by it, and to resynchronize on the beginning of the
transmission of the next character.

The transmission of a single character (58H) will be as follows:

||
par. UO -
0 0 1.1 0 \

- b o

Start bit

LSB MSB

Figure 1.1-1 Transmission of the character 58H in asynchronic serial communication

8

The transmission rate is measured in units of baud, which are bits transmitted in a second. A different
transmission is "bits per second”, whereby we mean the data bits which are transmitted in one second.
For example, if we transmit at a rate of 10 characters per second, the baud rate is 110. Each character
requires 11 transmission bits for its transmission (including the start and stop bits). This rate is also
equal to 80 bits per second (data bits).

To conclude, asynchronous serial communication is as described in following figure:

]

Start bit DATA Stop bit

 p——

Start bit DATA Stop bit

Figure 1.1-2 Description of the transmission of data in serial communication

The transmitting computer converts a character from its parallel form (as a binary number) into serial
form, and then transmits it. The receiving computer translates it back from serial form into parallel
form.

It is necessary for the receiver to know the transmission rate and the number of data bits in the
transmitted byte (which is not always seven). It also has to know whether the eighth bit indicates even
or odd parity or is insignificant, and the number of stop bits.

In communication between computers - one computer transmits and the other receives. Usually, both
computers have the capability of transmitting as well as of receiving. Each computer has a TD
(Transmit Data) output and a RD (Receive Data) input.

In communication, there are two major forms of connection. One is called: "Full duplex
Communication”.

TD
RD

1

RD
TD

HALF DUPLEX

TD
RD

1

RD
TD

FULL DUPLEX

Figure 1.1-3 The forms of connection in communication

9

The second form of connection is called: "Half duplex Communication”, and it uses only two
connecting wires. In half duplex communication, a computer, which changes from receiving into
transmitting status must ensure that the other computer has finished transmitting and that it has cleared
the line.

Usually, at the input and in the output of a communication line, there are driving components, which
enable transmission of the signals over long distances. There are different methods of connection
between computers. The most popular are RS232, RS422 and 20 mA current loop.

The process of receiving the serial information and of its conversion into parallel form operates in the
following manner: The receiving computer samples the RD input line and awaits the start bit, i.e. the
sinking of the line to '0". As soon as it notices this transition, it waits for a period equaling half a bit
time, and then samples the line again. If the line is still '0', that means that the start bit has been
received. Now it samples the line at intervals of one bit, according to the number of data bits.

While sampling, the bits are pushed one after the other (LSB is being received first) into a shift
register. At the end of the process, the shift register contains the transmitted byte, which is readable
in parallel form.

This process is performed with the help of a hardware device called a UART — Universal
Asynchronous Receiver Transmitter.

When the UART identifies the START bit, it collects all the DATA bits into a certain buffer register
and then creates an interrupt request to tell the CPU that a byte is waiting in the buffer register.

Some UARTSs can work also in synchronous mode, which means, starting collecting data only after
receiving a certain byte or word. They are called USART.

1.1.3 ASCII code

The ASCII code is a standard, international code used for the exchange of information between input
and output units (like the various types of printers, keyboards, external memories) and the computer,
as well as between computers. The name ASCII stands for: American Standard Code for Information
Interchange.

Each character (letter, digit or other symbol) has been given an agreed upon binary number, by which
it is represented in ASCII. For instance, if we want a printer to print the letter A, it must be fed with
the binary number 01000001 or 413s.

Following is a table with the various characters and their ASCII code where the ASCII code is
expressed in binary, hexadecimal and decimal form.

The first 32 numbers (0-31) are used as special codes for the dialog between the computers like: Start
Of Message (SOM), End Of Text (EOT), Carriage Return (CR), Line Feed (LF), etc.

Dec. | Hex. | Binary | Char.
32 20 | 00100000 | SPACE
33 21 | 00100001 !
34 22 100100010 "
35 23 |00100011 #
36 24 100100100 $
37 25 100100101 %
38 26 | 00100110 &
39 27 | 00100111 '
40 28 | 00101000 (
41 29]00101001)
42 | 2A]00101010 *
43 | 2B |00101011 +
44 | 2C]00101100 ,
45 | 2D |00101101 -
46 | 2E | 00101110 :
47 2F | 00101111 /
48 30 |00110000 0
49 31 |00110001 1
50 32 100110010 2
51 33 100110011 3
52 34]00110100 4
53 35]00110101 5
54 36 | 00110110 6
55 37 00110111 7
56 38 |00111000 8
57 39]00111001 9
58 | 3A | 00111010 :
59 | 3B | 00111011 ;
60 | 3C | 00111100 <
61 | 3D | 00111101 =
62 | 3E |[00111110 >
63 | 3F | 00111111 ?

10

Dec. | Hex. | Binary | Char.
64 | 40 | 01000000 @
65 | 41 | 01000001 | A
66 | 42 | 01000010 B
67 43 | 01000011 C
68 | 44 | 01000100 D
69 45 01000101 E
70 | 46 |01000110 F
71 47 101000111 | G
72 48 | 01001000 H
73 | 49 |01001001 I
74 | 4A | 01001010 J
75 | 4B | 01001011 K
76 | 4C | 01001100 L
77 | 4D | 01001101 | M
78 | 4E | 01001110 N
79 | 4F |01001111| O
80 50 |01010000 P
81 51 |01010001| Q
82 52 101010010 R
83 53 |01010011 S
84 54 101010100 T
85 55 |01010101 U
86 56 | 01010110 | V
87 57 | 01010111 | W
88 58 01011000 | X
89 59 |01011001| Y
90 | 5A |01011010 Z
91 | 5B | 01011011 [
92 | 5C | 01011100 1
93 | 5D [01011101| «
94 | 5 |01011110| =
95 | 5F |01011111

11

1.14 Communication with PC

The CARM-202 microcontroller has two USARTS. One is for the communication with the PC
(USART2) and one for the communication with the SENSE and the NeuLog modules.

The following program outputs to the LEDs the ASCII number of the character received from the PC.
NVIC_SetVectorTable(NVIC VectTab_FLASH, INTERUPT_VECTOR_START);

USARTZ2_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)
Leds_Init ();

while(1)
{
if(Received_Flag)

{
Leds_Out (Received_Char);

Received_Flag = 0; //Clear the flag

if (Received_Char =="h")

{

PC send('");
PC _send('H");
PC_send('e");
PC _send('l');
PC_send('l');
PC _send('0");
PC send('");

PC_send(0x0d);
PC_send(0x0a);

while((USART2->SR & USART_SR_TC) == 0); //wait until the Transmission_Complete
USART2->SR &=~USART _SR _TGC,; /IReset the Transmission Complete flag
}
}
}

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

declares for the CPU where the interrupt routines are located in the memory. This table is called
NVIC (Nested Vector Interrupt Control) table.

USART2_Interupt_Init(); initializes the USART2 the interrupt routine.

Interrupt routine should be enabled when we use them and the following instruction does that.

__enable_irq(); // (Enable Interrupts)
Leds_Init (); initializes the LEDs output routine.

12

When USART?2 interrupt routine receives a character, it raises the flag 'Received_Flag' and put the
character in the 'Received_Char' variable.

'Received_Flag' must be zeroed after reading the 'Received_Char'.

When the program receives the character 'h', it sends the word 'Hello'.
It sends the word 'Hello' when the Received_Char = "h' (the ASCII code of the letter h).

The program uses the PC_send(); that sends a character to the PC.

The program has to wait for the end of the transmission and to clear the "Transmission Flag' before
proceeding.

The last two instructions do that.

Another option to send words. is to send them as a string with the function Print_to_pc_msg (char
msg[]);.

This function sends the string between the brackets character after character to the PC.

The following program uses this function and send the string "Hello Robot" when the letter 'R’ is
pressed.

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USARTZ2_Interupt_Init();
__enable_irq(); // (Enable Interrupts)
Leds_Init ();

while(1)
{
if(Received_Flag)
{
Leds_Out (Received_Char);
Received_Flag = 0; /[Clear the flag
if (Received_Char =="'R")
{
Print_to_pc_msg (" Hello Robot ™);
PC_send(0x0d);
PC_send(0x0a);

while((USART2->SR & USART_SR_TC) == 0); //wait until the Transmission_Complete
USART2->SR &=~USART_SR_TC; //Reset the Transmission Complete flag
}
}
}

Sending CR and LF are not included in this function and must be sent separately when needed.

Procedure:
1.

2.

13

Check that main.c and main.h are open as in the following screen.

Enter the CARM_Project library and double click on the file CARM_Project.uvproj.

A CACARM Project V1.M\CARM_Project.uvproj - pVisiond - o ®
] File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
1 FH&| L@ | == | B R® jfi | @ Received_Char Vae e o B A
& 3 ¥1 | caRM_Project ViR As
Functions L <]] Mainc [Mainh e
& dataflash_write_data_without_e ~ 691 i
@ dataflash_read_Manufacturer_Il 692
- & TIM6_DAC_IRQHandler (void) £ad s o e : £
inputString_to_val (void) R At A A LS L
& USART1_IRQHandler (void) ::: LELELLLEL R TR R FEE i iiddd it tidddriidditiiidiitiidiidiiidiiiidididty
~ @ Sc_send (char sc) §97 © main(void)
@ Send_serial (char <[]} > se8 Ol
& USARTZ_IRQHandler {void) g9 |
— @ Char_to_Str (unsigned char s) 700
& PC_send (charsc) 701 /*
@ Print_to_pc_msg (char msg[]) 702 | // hes to Leds
~ @ Print_to_pc_inputString (void) 03 |/ —
& Send_AT_Command (char Corr :E; 3 e 5 ¥
@& AsctoBin (char dat) s IRRIReG SRR LETRS
~ @ Delay (void) 707 Leds Inic():
z main (void) 708 Switches_Init();
709
= X Ti0 while (1)
I '_d system_stm32f10x.c w 711 {
| « 3 712 temp = Switches_In(); //read the switches
- 713 Teds Out (temn //emEmnt ta TED L
& Project | @ Baoks [!fum...l[)., T < >
Observe the main() program.
It starts with the Switches to LEDs program.
3. Scroll down the main() program until you get the following screen:
C:\CARM_Pr(}jecl V1M CARM_Projectuvproj - pVisiond - o

File [Edit View Project Flash Debug Peripherals Tools SVCS Window Help
@R 9 @ o | PO M| EEE e M| B Received Char VaRe Qe oo @& B A
53| carm_Project FFar.a
=@ ¥ mainet | [Mainh
& dataflash_write_data_without_e A 905 [/*
@ dataflash_read_Manufacturer_Il 906
@ TIME_DAC_IRQHandler (void) 207 /:/
- & InputString_to_val (void) So8 | // Serial Communication with PC
-~ USARTI_IRQHandler (void) 08 | // o L
& Sc_send (charsc) 810 | // The serial communication with PC is based on USART2
= X 911 | // Interrumpt routine handles the serial communication
-~ @ Send_serial (char c[]) 912 / The NVIC (Nested Vector Inte pt Controcl table must be declared
-~ @ USARTZ_IRQHandler (void) 913 / The USART2 interrupt must be initialized
- @ Char_to_5tr (unsigned char s) 914 | // Interrupts must be enabled
& PC_send (char sc) 91s | //
- @ Print_to_pc_msg (char msg(]) 916 | // The USART2 interrupt handlers puts 1 in 'unsigned char Receive_Flag'
.- @ Print_to_pc_inputString (void) 8917 | // when a character is received
918 | // The received character is put in 'unigned char Received Char'
.- @ Send_AT_Command (char Corr i —
AsctoBin (char d 919 | // Received_Flag must be zeroed after reading the Received_Char
- ctol 'n_(c ar dat) 920 | // Sending char to PC is done by the function *PC_Send(unsigned char)®
& Delay (void) 921 | // -
% main (veid) 922 | // The program waits for a character, output it to the LEDs
B =] Mainh 923 | // When the received character is 'h', it sends 'Hello' to the PC
B core_cm3.c 924 | / /=== ==ss====
I+ system_stm32f10w.c v 223 |
< > 926 // Set the Interrupt Vector Table base locaticon at address INTERUPT VECTOR_START
- 927 NVTC SetVentnrTahle (NVTC VentTah FTASH. TNTFRIPT VECTOR START) :
E Project | @ Books {} Funct.| Oy Templ...| || <
ULINK2/ME Cortex Debugger CAP NUM SCRL C
=

This section contains the Serial Communication with PC program.

14

4. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line.

Scroll down over the preface of the program and you get the following screen:

K C\CARM_Project V1.4\CARM _Projectuvpraj - pVisiond a

File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help

B HI L F- = [= = 5 J5 | [Received_Char ~ 3" Q 3 8B N
& (5 | $%| carm_project Vi A
Functions = 2 [#) Maine | [Mainh
& dataflash_write_data_without_e » 925
& dataflash_read Manufacturer_Il 926 // Set the Interrupt Vector Table base location at address INTERUPT VECTOR START
& TIMB_DAC_IRQHandler (void) 927 NVIC_SetVectorTable (NVIC VeccTab FLASH, INTERUPT_VECTOR_START):;
& InputString_to_val (void) 926
& USART1_IRQHandler (void) 929 USARTz_In:er'.:pr._I.r.,;:ri: AT
& S cond tehora) 930 —_ena‘flg_qut:; 'y (Enable Interrupts)
= 931 Leds Init ()}
@ Send_serial (char c[]) 932 | -
@ USART2_IRQHandler (void) 933 while (1)
@ Char_to_5tr (unsigned char s) 834 (] i
& PC_send (charsc) 935 if (Received Flag)
& Print_to_pc_msg (char msg[]) 936] {
@ Print_to_pc_inputString (void) 937 LedsTOut ERecelv?d_Charl: o) .
. Send_AT_Command (char Corr :;i Received Flag = 0; //Claar the flag
% AsctoBin (char dat) 940 if (Received Char == 'h')
& Delay (void) 941 { il
& main (void) 942 | PC send(' ')
& [Mainh 943 BC_send('H'):
B [core_cm3.c 944 PC_send('=');
@[] system_stm32f1x.c v 945 PC_send('1'):
< > 946 BC_send('1')
947 P mandl 'A')
E Project | @ Books) Funct...| O, Templ <

Observe the program and compare it with the exercise program.

int main (void)

{
NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USART2_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)
Leds_Init ();

while(1)

{

if(Received_Flag)
{
Leds_Out (Received_Char);
Received_Flag = 0; /IClear the flag

if (Received_Char =="'h")
{

PC send("");
PC_send('H");
PC_send('e");
PC_send('Il');
PC_send('l');
PC_send('0");
PC send("");
PC_send(0x0d);
PC_send(0x0a);

while((USART2->SR & USART_SR_TC) == 0); //Wait until the Transmission_Complete flag (in status
register) will be set
USART2->SR &=~USART_SR_TC; /IReset the Transmission Complete flag
}
}
}
}

15
Note the way the brackets are written.

Spacing is important in order to avoid mistakes (it is not important to the compiler).

Save the program by clicking on the Save icon ﬂ .

Activate the compiler by clicking on the Rebuild icon

The C compiler and linker will be activated and perform compilation, location and conversion
from your file to HEX file.

The window presenting the program's operation and results is shown on the bottom of the
screen.

EJC:\CARM Project V1.MCARM_Project.uvproj - pVisiond - o

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

IR LT | B revicw MRS Q 005 @[E-] R
& 2 & 31| carm_Project ™ ;,\| &
Functions a @ E‘I Main.c 3 Main.h
@ dataflash_write_data_without_e A 925
& dataflash_read_Manufacturer_Il 926 /{ Set the Interrupt Vector Table base location at address INTERUPT VECTOR START
@ TIME_DAC_IRQHandler (void) 927 HVIC SecVectorTable (NVIC VectTab FLASH, INTERUPT_VECTOR START):
$ InputString_to_val (veid) gf& . _
& USART1_IRQHandler (void) 929 LSRRI‘Z’_In.e:JD._I:j.:Ltl]_: -)
¢ Sc dfch 930 __enable irq(); // (Enable Interrupts)
—send (char sc) 931 Leds_Init ():
& Send_zerial (char []) 932 I -
& USARTZ_IRQHandler (void) 933 while (1)
§ Char_to_Str (unsigned char s) 934 H {
& PC_zend (char sc) 935 T if (Received_Flag)
$ Print_to_pc_msg (char msg[]) 936 0 {
& Drint bo ne inedShrinn funidl © 937 Leds_Out (Received Char);
< > 938 Received Flag = 0; f/Claar the flag
& Project | @ Books {} Funet...| D, Temp <

Build Output

compiling Main.c...

linking...

Program Size: Code=1512 RO-data=320 RW-data=60 ZI-data=15%56
FromELF: creating hex file...

"CARM Project.axf" - 0 Errcr(s), 0 Warning(s).

Check that there are no errors and no warnings.
If there are errors, repair the errors and repeat steps 5 and 6 again.

Connect the CARM-202 module to the PC by the USB communication cable.

10.

11.

12.

16

A special interface program was prepared for downloading and running the object program in
HEX format.

Find the CARM-I1 program in the CARM exercises directory and double click on it.

4

You can also click on its icon lezsze on the desktop.

The following screen will appear.

« CARM-202 V3_01 = X

‘C:\bbmﬂ M_Project V1. 4\CARM_Project hex

Module is connected

™~

The message ""Module is connected™ should appear.

Click on the Browse & J putton and use the browser to find the file CARM_Project.hex.
Click on this file.

In order to communicate with the PC, we have to turn the PC into terminal. The terminal
transmits the ASCII code of any pressed key and display the received characters.

Click on the Open Terminal button and you will get the following screen.

< Termina = =} X

|

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

17

s
Download and run the program by clicking on the Download 4l button.

The program downloaded into CARM-202.

Click on the Run % button to run the program.
Click on the terminal screen to see the blinking cursor there.
Click on the 'a’ key.

This letter should appear on the screen.

< Terminal = a X

|

The "a’ binary ASCII code (01100001) should appear on the LED display.
Check that.
Click on other keys and see their effect on the screen and on the LEDs.

Click on the 'h' key and you will get the message 'Hello' on the screen.

[-Eitll:idh Hella

Press the Stop % | to stop the program's running.

The program is still in the CARM-202 module flash memory.

Click on the Run % putton to run it without downloading.
Click on keys and see their effect on the screen and on the LEDs.
Click on the 'h' key and you will get the message 'Hello' on the screen.

L

| to stop the program's running.

Press the Stop
Change the program so it sends the word ' Robot ' when the key 'R’ is pressed.
Save the program.

Compile the program and check for errors.

18

L ¥
27. Download the program by clicking on the Download 4| button.

You do not have to select the file CARM_Project.hex.

28. Clickonthe Run “* button to run the program.

29. Press various keys including 'R' and check the program behavior.

30. Press the Stop ,M to stop the program's running.
31. Activate the /* */signs by deleting the two slashes at the beginning of each line.
The program turns to green.

32. Scroll down until you get the following screen:

I CACARM _Project V14\CARM_Projectuvpraj - pVisiond

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

S d @ @9 - p s = (@ Received_Char VR Qe & BN
S () i $% | carm_projeat VK|
Functions L | [#] Mainct] Mainh v X
@ dataflash_block_erase (unsigne ~ | [961 [/* A
@ dataflash_page_e 2 962
@ dataflash_write_data (int32_t d_ 963
- & dataflash_write_data_without_e S | /
@ dataflash_read_Manufacturer_Il :Zi
@ TIMG_DAC_IRQHandler (void) S
@ InputStiing to_val (void) e
@ USARTI_IRQHandler (void) 962
@ Sc_send (char sc) 970
@ Send_serial (char c[]) 971
@ USART2_IRQHandler (void) 972
@ Char_to_Str (unsigned char s) S
@ PC_send (charsc) i;:
@ Print_to_pc_msg (char msg[]) e
& Print_to tString (void) 077
& Send A and (char Corr a7e
- s 978
& D 980
- & main (void) v 981
% s 982 " .
QA3
= t| g {} Funct..| 0, < >

This section contains the Sending a string to PC program.

33. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line.

19
34. Observe the program and compare it with the exercise program.

int main (void)
NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USARTZ2_Interupt_Init();
__enable_irq(); // (Enable Interrupts)
Leds_Init ();

while(1)

if(Received_Flag)

{
Leds Out (Received_Char);

Received_Flag = 0; /[Clear the flag
if (Received_Char =='R")

{
Print_to_pc_msg (** Hello Robot ™);

PC_send(0x0d);
PC_send(Ox0a);
while((USART2->SR & USART_SR_TC) == 0); //Wait until the

Transmission_Complete flag (in status register) will be set
USART2->SR &=~USART_SR_TC; //Reset the Transmission Complete flag

}
}
}

¥

35. Save the program.

36. Compile the program and check for errors.

L ¥
37. Download the program by clicking on the Download J button.

You do not have to select the file CARM_Project.hex.

38. Clickonthe Run' % button to run the program.

39. Press various keys including 'R' and check the program behavior.

40. Press the Stop M to stop the program's running.

41. Use the 'Switch — Case' instruction and creates a program that sends to the terminal a Day name
when its initial letter is pressed.

42. Save the program.

43.

44,

45.

46.

47.

20

Compile the program and check for errors.

s
Download and run the program by clicking on the Download and Run 4, button.

Press various keys and check the program behavior.

Press the Stop M to stop the program's running.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

21

Experiment 1.2 — Communication with SENSE

Objectives:

. Sending commands to SENSE.
= Forward and backward.

. Changing speed.

. Turning right and left.

Equipment required:

= Computer

. SENSE autonomous

. CARM-202 C coding unit
. BAT-202 battery module

Discussion:

The previous experiment described how to send characters and strings to the PC.

Talking with the SENSE and all other brain units is done by sending strings too. The brains in these
units analyze the strings and execute them. Modern systems are built this way.

The communication between CARM-202 and SENSE and brain units is done through USARTL.

The commands are built as strings and we use a function that sends this string called:
Send_AT_Command();

The following string describes the structure of a string to operate the robot motors:
"AT+SetMotor:[robo.type],[robo.ID],[num],[command]™

The square brackets mean a field with options.

robo.type options are:

Sense, Rob0206, RoboEXx, BrainServo, BrainMotor, BrainArm, IRTrack.

robo.ID is a number from 1 to 9.

22
num options are:

for all motors
for M1
for M2
for M3

WN PO

command options are:

Off for stop

Cw for clockwise

Ccw for counter clockwise

The following is a command for the SENSE to move forward:

Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Cw]™);

Note:
The distinction of upper case and lower case is important.

No spaces should be in the command string.

The following string describes the structure of a string to set the speed of the robot motors:
"AT+SetSpeed:[robo.type],[robo.ID],[num],[speed]""

Speed options are a number from 0 to 255.

The following is a command to set the SENSE motor number 2 speed to 250:
Send_AT_Command("*AT+SetSpeed:[Sense],[1],[2],[250]"");

Note:

We use the SetSpeed command when we want to change the speed of a motor. The robot remembers

the last setup speed.

We can set each motor to a different speed.

23
The following program moves the SENSE forward for 2 seconds and stop.

main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USARTZ1_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command("*AT+SetSpeed:[Sense],[1],[0],[200]""); //Sense speed fast
Send_AT_Command("'AT+SetMotor:[Sense],[1],[0],[Cw]""); //Sense forward
for (i=1;i!=8000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

End_of program();

}

The function End_of_program(); creates software reset to the CARM-202 module. It is like
pressing the RST button or sending the STOP command.

24

Procedure:

1. Enter the CARM_Project library and double click on the file CARM_Project.Uvproj.

2. Check that main.c and main.h are open as in the following screen.

A C\CARM-202\CARM _Project VI\CARM_Project uvproj - pVisiond - o
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
(S @] B[w PR R EEE G B W davr @ecsed]y
& [B @ | 58| carmproject v AR
Functions g A Mainc] Mainh |
L# dataflash_page_erase (int32_t ~ 634
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
© dataflash_read Manufacturer. &3 J1 1IN0 RL L0 L1111
& TIMS_DAC_IRQHandler (void) :3: FELLELLLEEELL L EALI T fiids SEETEELLE FEELLELELE Ll iiiieil!
& USART1_IRQHandler (void) o | ——
& Sc_send (charsc) it 541 I-_—'I'[
@ Send_serial (char c[]) 642 /*
& USARTZ_IRQHandler (void) 643 f
@ Char_to_Str (unsigned char <) 644
§ PC_send (char sc) 645
& Print_to_pc_msg (char msg[]) 646
& Print_to_pc inputString (void] ::;
& Send_AT_Command (char Co £49
$ Leds_Out {unsigned char Led: 650
& Switches_In (void) 651
& main (void) 652
i 653
- 654
- () system_stm32f10c.c £25
B L] sy v 656
< ¥ 657 "/
& Project| @ Books () Furw...‘_lﬂ.p'c'l <
3. Scroll down the main() program until you get the following screen:
CACARM_Project V1.4\CARM_Project.uvproj - pVisiond -
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=2 R IR - | =_g,r_a_-,f,f-__[@ Received_Char Vda|Q ® @a!g.|-\
& @t $8| carM_Project
| Functions £ 3 x | .&_
& ':] Main.c
[3 Main.h

o
[core_cmi.c
@[system_stm32f10x.c

UPT_VECTOR_START
CIOR_START) ;

1004 USART1_Inter
1005 __enable irq(): /

ti):

(Enable Interrupts)

50]"): //Sense speed fasc
[Sense], [1],[0], [Cw]™); //Sense forward

; oA+#);

tor: [Sense], [1], [0], [Of£]");: //Sense atop

5
5

1010 for a ii= g
Send AT Command ("AT+Se

[Project | @ Books 1} Funct..| Dy Templ...| || €

This section contains the Sense forward and stop program.

25

4. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

o

KA CACARM_Project V1.4\CARM_Projectuvpraj - pVisiond
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
| &5 J B9 ™ E iE = /] [# Received_Char w _* & ‘Q @ & & El- | R
£ (& 2 | 58| carm_Project v &K B
Functions ra [#] mainc | 2] Mainh v
- [Main.c 995 | /
-] Main.h 926
[#-] core_em3.c
@] system_stm32f10x.c

1001 // Set the Interupt Vector Table base location at ddress INTERUPT VECTOR_ START
1002 NVIC_SecVectorTable (NVIC VectTab FLASH, INTERUPT_VECTOR_START):

1004 USART1_ Interupt Init():

1005 __enable irq(); (Enable Interrupts)

i008 Send AT Command ("AT+SetSp
1008 Send AT Command ("
1010 for (i =1 ; i!
1011 Send AT Command ("AT+SectMotor: ense 13, [0}, [OfL]"): f/Sense stop

1014 End of_program();

[Project | @ Bc {} Fund...l(L [< 5

1.2.1 Forward and stop
1. Observe the program and compare it with the exercise program

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1_Interupt_Init();
__enable_irq(); // (Enable Interrupts)

Send_AT_Command("'AT+SetSpeed:[Sense],[1],[0],[200]'"); //Sense speed fast
Send_AT_Command("'AT+SetMotor:[Sense],[1],[0],[Cw]""); //Sense forward
for (i=1;i!=8000000 ; i++);
Send_AT_Command(*AT+SetMotor:[Sense],[1],[0],[Off]'"); //Sense stop

End_of _program();

}
2. Save the program by clicking on the Save icon ﬂ .

3. Activate the compiler by clicking on the Rebuild icon
Check that there are no errors and no warnings.

4. Ifthere are errors, repair the errors and repeat steps 2 and 3 again.

26
5. Connect the CARM-202 module to the PC by the USB communication cable.
6. Plug the CARM-202 module into the left socket of the SENSE.
7. Plug the BAT-202 battery module into the right socket of the SENSE.
It does not matter where we plug the modules.
We do so for the convenience of connecting the communication cable.

We need the battery module, because it is not recommended too drive the SENSE by the PC

USB outlet and most of the computers cannot supply enough power to CARM-202 and to the
SENSE.

8. Find the CARM-I program in the CARM exercises directory and double click on it.

You can also click on its icon ‘w2 0N the desktop.

The following screen will appear.

@ CARM-202 V3.01 - %

|C:\BBCARM_Project 1 44CARM_Froject hex Browse....

L ¥

M
&
-l

Module is connected

9. Click on the Browse :J putton and use the browser to find the file CARM_Project.hex.

Click on this file.

L ¥
10. Download the program by clicking on the Download 4| button.

The program downloaded into CARM-202 and runs.

27

11. Click onthe Run ~% button to run the program.
The SENSE should move forward for 2 seconds and stop.
12. Disconnect the communication cable from CARM-202.

13. Put the SENSE on the floor and press the RUN green button on CARM-202 panel to run the
program.

The SENSE should move forward for 2 seconds and stop.

14. Connect the communication cable to CARM-202.

1.2.2 Forward and backward
1. Change the program to the following:

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USARTZ1_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command(**AT+SetSpeed:[Sense],[1],[0],[200]""); //Sense speed fast
Send_AT_Command("'AT+SetMotor:[Sense],[1],[0],[Cw]""); //Sense forward
for (i=1;i!=8000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

for (i=1;i!=1000000 ; i++); //Short delay
Send_AT_Command(*"*AT+SetMotor:[Sense],[1],[0],[Ccw]™"); //Sense backward
for (i=1;i!=8000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

End_of program();

}

It is recommended to add short delay before changing motor direction.
2. Save the program.

3. Compile the program and check for errors.

L ¥
4. Download the program by clicking on the Download J button.

5. Clickonthe Run “* putton to run the program.

The SENSE should move forward for 2 seconds, stops, move backward for 2 seconds and stop.

28

1.2.3 Turning left and right

For turning, we have to address each motor separately.
We have three options:

Deviating — rotating each motor in different speed.
Turning — stopping one motor and rotating the other one
Rotating — rotating one motor forward and the other motor backward

1. Change the program to the following turning left and right program:

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USARTZ1_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command("*AT+SetSpeed:[Sense],[1],[0],[200]""); //Sense speed fast
Send_AT_Command("'AT+SetMotor:[Sense],[1],[2].[Cw]""); //Turn left
Send_AT_Command("*AT+SetMotor:[Sense],[1],[1],[Off]"); /I

for (i=1;i!=4000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[2],[Off]""); //Turn right
Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[Cw]""); //

for (i=1;i!=4000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

End_of program();

}

2. Save the program.

3. Compile the program and check for errors.

L ¥
4. Download the program by clicking on the Download J button.

5. Clickonthe Run' % button to run the program.

The SENSE turns to the left for 1 second, turns to the right for 1 second, and then stops.

6. Run the SENSE on the floor without the communication cable.

7. Change the delay time for having turns of 90°.

29

1.2.4 Rotating left and right

1. Change the program to the following rotating left and right program:

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USARTZ1_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command("*AT+SetSpeed:[Sense],[1],[0],[200]""); //Sense speed fast
Send_AT_Command("'AT+SetMotor:[Sense],[1],[2],[Cw]""); //Rotate left
Send_AT_Command("*AT+SetMotor:[Sense],[1],[1],[Ccw]™); /]

for (i=1;i!=4000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

for (i=1;i!=1000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[2],[Ccw]"*); //Rotate right
Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[Cw]""); //

for (i=1;i!=4000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

End_of program();
}
2. Save the program.

3. Compile the program and check for errors.

s
4. Download the program by clicking on the Download button.

5. Clickonthe Run % putton to run the program.
The SENSE rotates to the left for 1 second, rotates to the right for 1 second, and then stops.
6. Runthe SENSE on the floor without the communication cable.

7. Change the delay time for having turns of 90°.

1.2.5 Deviating left and right
1. Change the program to the following deviating left and right program:
int main (void)

{
unsigned int i;

30

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1_Interupt_Init();
__enable_irq(); // (Enable Interrupts)

Send_AT_Command(*'AT+SetSpeed:[Sense],[1],[2],[200]""); //Motor2 speed fast
Send_AT_Command(**AT+SetSpeed:[Sense],[1],[1],[100]""); //Motor1 speed slow
Send AT _Command(""AT+SetMotor:[Sense],[1],[2],[Cw]""); //Deviate left
Send_AT_Command(""AT+SetMotor:[Sense],[1],[1].,[Cw]""); //

for (i=1;i!=4000000 ; i++);
Send_AT_Command(**AT+SetSpeed:[Sense],[1],[1],[200]""); //Motor1 speed fast
Send_AT_Command(**'AT+SetSpeed:[Sense],[1],[2],[100]""); //Motor2 speed slow
for (i=1;i!=4000000 ; i++);
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

End_of program();

}

2. Save the program.

3. Compile the program and check for errors.

¥
4. Download the program by clicking on the Download J button.

5. Clickonthe Run “* putton to run the program.
The SENSE deviates to the left for 1 second, deviates to the right for 1 second, and then stops.
6. Run the SENSE on the floor without the communication cable.

7. Change the delay time for having turns of 90°.

31

1.2.6 Challenge exercises — Moving in a square

Task 1: Make a program that moves the SENSE in a 30x30 cm square until it returns to its original
place.

Use the Rotate instructions for rotating.

Task 2: Make a program that moves the SENSE in a 30x30 cm square until it returns to its original
place.

Use the Turn instructions for rotating.
Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

32

Experiment 1.3 — Interactive Programs

Objectives:
. Program that reacts to sensors.

" Moving the SENSE to a wall.
. Moving the SENSE to a wall and back.

Equipment required:

. Computer

u SENSE autonomous

. CARM-202 C coding unit
. BAT-202 battery module

Discussion:

In this experiment, we will move the SENSE to a wall.

We will learn how to read and react to the Front Range sensor.

A closed loop system is a control system, which reacts to sensors and switches.

An example for closed loop system is a control system that lights up a lamp when it is dark, and turn
it OFF when there is light. This system is automatically adapted to summer time (when the night is

short) and to wintertime (when the night is long and starts early).
The program of closed loop system contains decision instructions such as:

‘while', 'do - while', 'if — then'.

33

1.3.1 The SENSE sensors

The SENSE has 6 sensors. Five range sensors on its perimeter and one line detector on its bottom.

Right back sensor \ / Left back sensor

\ sense
|E| Right front sensor &2 \ Left front sensor

Front sensor
: Bottom sensor

Each sensor has a number marked on the SENSE marked above.

An interactive program reacts to a value read from the sensor. Before writing a program, we have to
know the required sensor value to which the program should react to.

The following program prints on the terminal screen the read values from the front sensor (2) every
one second.

34

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1 Interupt_Init();

USARTZ2_Interupt_Init();

__enable_irqg(); // (Enable Interrupts)

while(1)

{

//Send Getlnput to Sense with ID=1 and waits for answer
Send_AT_Command("*AT+GetInput:[Sense],[1],[2]"");
if((stringComplete) & & (inputString[0] != 'F')&&(inputString[1] !="a"))
{

Print_to_pc_msg (** Front sensor =');
Print_to_pc_inputString ();

}
for (i=1;i!=4000000 ; i++);

}
}

In this program, we use the two USARTSs. USARTL1 for communication with the SENSE and the
USART?2 for communication with the PC.

The function Send_AT_Command sends through USART1 the string:
"AT+Getlnput:[Sense],[1],[2]"

Sensor No. 2 is the front sensor (see above).

The function waits for the sensor value from the SENSE and puts it in a string called inputString.
If no answer received, the inputString will be "False".

The program checks that the received string is not "False".

If not, prints "Front sensor =" and the sensor value.

The function Print_to_pc_inputString (); prints the inputString with carriage return and line feed.

35

1.3.2 Moving towards a wall and stopping
The following program moves the SENSE forward and stops when the SENSE is close to a wall.
In this program, we use the variable STOP with the stopping value of the front sensor.

int main (void)

{
float STOP = 350;
float VAL;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USARTZ1_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send AT _Command(""AT+SetSpeed:[Sense],[1],[0],[150]""); // Set Sense speed
Send_AT_Command("'AT+SetMotor:[Sense],[1],[0],[Cw]""); // Sense forward

VAL =0;
while(VAL < STOP)
{

Send_AT_Command("*AT+GetInput:[Sense],[1].[2]"");
if((stringComplete) &&(inputString[0] != 'F')&&(inputString[1] !'="a"))
{

InputString_to_val(); //update inputStringVal

VAL = inputStringVal;
}

}
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]'"); // Sense stop

End_of program();
}

The inputString received from SENSE is a string and we cannot compare it with float values.

The function InputString_to_val(); converts the inputString string to a float value called
inputStringVal.

36

Procedure:

Enter the CARM_Project library and double click on the file CARM_Project.Uuvproj.

Check that main.c and main.h are open as in the following screen.

B CACARM-202\CARM_Project VI\CARM_Project uvproj - pVisiond - o %
) 4 dl
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
(S @] B[w PR R EEE G B W Vae@ecs @y
& [B @ | 58| carmproject v AR
Functions 10| [mane |[2] weinnl v x
L# dataflash_page_erase (int32_t ~ 634 -
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
& dataflash_read_Manufacturer, 637
& TIM5_DAC_IRQHandler (void) :zg
& USART1_IRQHandler (void) o | ——
& Sc_send (charsc) it 541 I-_—'I'[
@ Send_serial (char c[]) 642 /*
& USARTZ_IRQHandler (void) 643 | //
@ Char_to_Str (unsigned char <) 644 | //
§ PC_send (char sc) 645
@ Print_to_pc_msg (char msg(]) 646 unsigned char temp;
& Print_to_pc inputString (void] ::;
& Send_AT_Command (char Co £49
$ Leds_Out {unsigned char Led: 650
& Switches_In (void) 651
& main (void) 652
i 653
654
- () system_stm32f10c.c £25
B L] sy v 656
< ¥ 657 "/ L
& Project| @ Books () Func..._lﬂ...'c mp < 2
Scroll down the main() program until you get the following screen:
EC:\CARM_Pm'ec! V1.5\CARM_Projectuvpraj - pVisiond = a] ®
) J) Prel
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
DEd@| » L@ | B ™ = Uz | @ Receved_char Vael@Qleoco @A
& (3 @ | ¥ carmProjeat M&| &R
| Functions L =] [Z] Mm.r.D_Mahl.h 3
& [2] Main.c 1028 /*
®- [Mainh 1029
B D core_cmi.c 1030 | // sensor value to PC
B |=) system_stm32f10w.c 1031 | /f e
D s 1032
1033 iz
1034
1035 nterrupt Vector Table base location at address INTERUPT_VECIOR_START
1038 orTable (NWIC VectTab FLASH, INTERUPT VECIOR START);
1037
1038 :
1039 ;
1040 ‘nable Interrupts)
1041
1042 while (1)
1043
1044
1045 //5end GetInput to Sense with ID=1 and waits for answer
1046 Send AT Command ("AT+GetInput:[Sense], [1],[2]");
1047
1048 if ((scringComplece) && (inputScring[0] '= 'F')&& (inpucScring[l] != 'a'})
1049 {
- 1080 Print tA e maa [" Front asnanr = ® 3 ;
Eproject | @ Books () Funat... < >

This section contains the Sending front sensor value to PC program.

37

4. Activate the program by making the two remark limit signs to remark lines by adding two

slashes at the beginning of each line and you get the following screen:

l'_JC:_CAP.\u‘a_Prc;eclV1.S\CARM_Pro_:ect.uvp:cj - pVisiond
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help

=a" N B9 | - E IE /= fl| [Received_Char Y2 dq e & B A
& & & ¥ carmM_Project F3F

Functions L= [¥] Mainct [] Main.h

B [Main.c 1028 | //] /*
B] Mainh 1029
@[] core_emi.e 1030
B [system_stm32f10ec

// Set the Interrupt Vector Table base location at address INTER
1036 RVIC SetVectorTable (NVIC VectTab FLASH, INTERUPT VECTOR START):
1038 USARTL_Interupt_Init();

1039 USARTZ_ Interupt_Init():
1040 __enable irq(): // |Enabl

1048 if((stringComplete) && (inputString[0] != *F')&& (inputString[l] != 'a‘')}
1049 |
1N50 Print. tn no mas (" Frant aenanr = ")

[@ rroiea | @Books 1) Funct.[Dy Templ. | || <
1.3.3 Printing front sensor values
1. Observe the program and compare it with the exercise program.

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1 Interupt_Init();

USARTZ2_Interupt_Init();

__enable_irqg(); // (Enable Interrupts)

while(1)

{

//Send Getlnput to Sense with ID=1 and waits for answer
Send_AT_Command("*AT+GetInput:[Sense],[1],[2]"");

if((stringComplete) & &(inputString[0] != 'F')&&(inputString[1] !="a"))
{
Print_to_pc_msg ('* Front sensor =");
Print_to_pc_inputString ();
}
for (i=1;i!=4000000 ; i++);
}
}

2. Save the program by clicking on the Save icon 'ﬂ .

1035 f S the Interrupt Vector Tat 1 On & NTERUPT VECTOR START

10.

38

Activate the compiler by clicking on the Rebuild icon
Check that there are no errors and no warnings.

If there are errors, repair the errors and repeat steps 2 and 3 again.

Connect the CARM-202 module to the PC by the USB communication cable.
Plug the CARM-202 module into the left socket of the SENSE.

Plug the BAT-202 battery module into the right socket of the SENSE.

It does not matter where we plug the modules.

We do so for the convenience of connecting the communication cable.

Find the CARM-I program in the CARM exercises directory and double click on it.

You can also click on its icon ‘w2 On the desktop.

The following screen will appear.

« CARM-202 V3 01 Ll

|C:\phCARM_Project Y1.4\CARM_Project hex Browse.__:

L §

VT
LN

Click on the Browse
Click on this file.

In order to communicate with the PC, we have to turn the PC into terminal. The terminal
transmits the ASCII code of any pressed key and display the received characters.

11.

12.

13.

14.

15.

16.

17.

39

Click on the Open Terminal button and you will get the following screen.

Put the SENSE on the table and put a wide object 30 cm in front of it.

L ¥
Download the program by clicking on the Download 4l button.

The program downloaded into CARM-202 and runs.

Click onthe Run % putton to run the program.
The front sensor values will be printed on the screen every one second.
Move the 'wall' object close to the SENSE and observe the displayed values.

Record the front sensor value in a distance of about 8 cm from the wall.

Press the Stop % | to stop the program's running.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

40

1.3.4 SENSE to a wall and stop

1. Scroll down until you get the following screen:

A2 CACARM_Project V1.5\CARM_Project uvproj - pVisiond o *®

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
= H a A] | = IE /5 fi5 | [Received_Char v B " @1 @ o I Y

2 EE %31 | cARM_project v &8

Functions < | [£] Mainc |] Mainh i
B~ [=] Main.c 1063 [/*
& [=] Mainh 1064
- [core_emi.c 1085
B |w] system_stm32filw.c 1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
lo82
ipe3
1084
1NA5

Erroject | @oooks () Funct..[D, 7 < e T >

This section contains the Sense forward to a wall and stop program.

2. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line.

3. Observe the program and compare it with the exercise program.

int main (void)

float STOP = 350;
float VAL;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USARTZL_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command("'AT+SetSpeed:[Sense],[1],[0],[150]""); //Set Sense speed
Send_AT_Command("'AT+SetMotor:[Sense],[1],[0],[Cw]""); //Sense forward
VAL =0;

while(VAL < STOP)

{

Send_AT_Command(""AT+GetInput:[Sense],[1].[2]");
if((stringComplete)&&(inputString[0] !'= 'F")&&(inputString[1] !='a"))
{

InputString_to_val(); //update inputStringVal
VAL = inputStringVal;
}

}
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0].[Off]"); /ISense stop

End_of program();
}

10.

11.

12.

13.

14.

15.

16.

17.

18.

41
Save the program.
Compile the program and check for errors.

Put the SENSE on the table and put a wide object 30 cm in front of it.

s
Download the program by clicking on the Download J button.

You do not have to select the file CARM_Project.hex.

Click on the Run % putton to run the program.

The SENSE will move forward and stop about 8 cm from the wall.
Change the program so the SENSE stops 5 cm in front of the wall.
Save the program.

Compile the program and check for errors.

s
Download the program by clicking on the Download J button.

Click on the Run % putton to run the program.

Check the SENSE movement.

Change the program so the SENSE stops 5 cm in front of the wall, waits two seconds and then

moves backward for two seconds.
Save the program.

Compile the program and check for errors.

L ¥
Download the program by clicking on the Download J button.

Click onthe Run' ~% putton to run the program.

Check the SENSE movement.

42

1.3.5 Endless loop

Most of the control and robotic programs are programs that run in endless loop.

1.

6.

Change the program so that the SENSE goes forward and stops when it meets the wall, goes
back for 3 seconds, and forward again in endless loop.

Add

while (1)
{

Movement program

}

Save the program.

Compile the program and check for errors.

L §
Download the program by clicking on the Download J button.

Click on the Run ' ~% putton to run the program.
Check the SENSE movement.

Run the SENSE on the floor without the communication cable.

1.3.6 Challenge exercise — Moving to a wall and back

Task 1: Improve the program so that the SENSE will move between 5 cm from the wall and 10

cm from the wall very slow.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

43

Experiment 1.4 — Movement Along a Black Line

Objectives:

Program that reacts to sensors.
Moving the SENSE to a black line.
Moving the SENSE between lines.
Moving the SENSE along a black line.

Equipment required:

= Computer

. SENSE autonomous

. CARM-202 C coding unit
. BAT-202 battery module

Discussion:

In this experiment, we will move the SENSE to a black line and between two black lines. The position
of the lines limits its motion. The robot changes direction when it finds a black line. This is an example
of a system called a Manipulator.

We will learn how to read and react to the Bottom Line sensor.

1.4.1 The SENSE bottom sensor

The following program prints on the terminal screen the read values from the bottom sensor (1) every
one second.

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1 Interupt_Init();

USARTZ2_Interupt_Init();

__enable_irqg(); // (Enable Interrupts)

while(1)

{

//Send Getlnput to Sense with ID=1 and waits for answer
Send_AT_Command("*AT+GetInput:[Sense],[1],[1]"");
if((stringComplete) &&(inputString[0] != 'F")&&(inputString[1] !'="a"))

Print_to_pc_msg (** Bottom sensor ='");
Print_to_pc_inputString ();
}
for (i=1;i!=4000000 ; i++);
}
}

44

In this program we use the two UARTSs. USART1 for communication with the SENSE and the
USART?2 for communication with the PC.

The function Send_ AT_Command sends through USART1 the string:
"AT+Getlnput:[Sense],[1],[1]"
Sensor No. 1 is the bottom sensor.

The function waits for the sensor value from the SENSE and puts it in a string called inputString. If
no answer received, the inputString will be "False™.

The program checks that the received string is not "False".
If not, prints "Bottom sensor = " and the sensor value.

The function Print_to_pc_inputString (); prints the inputString with carriage return and line feed.

1.4.2 Moving to a black line and stopping
The following program moves the SENSE forward and stops when the SENSE is on a black line.
In this program, we use the variable STOP with the stopping value of the front sensor.

int main (void)

{
float BLACK = 250;
float VAL;

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1_Interupt_Init();
__enable_irg(); // (Enable Interrupts)

Send AT _Command(""AT+SetSpeed:[Sense],[1],[0],[150]""); //Set Sense speed
Send_AT_Command("AT+SetMotor:[Sense],[1],[0],[Cw]""); //Sense forward

VAL = 900;
while(VAL > BLACK)
{

Send_AT_Command("*AT+GetInput:[Sense],[1],[1]"");
if((stringComplete) &&(inputString[0] != 'F')&&(inputString[1] !'="a"))
{

InputString_to_val(); //update inputStringVal

VAL = inputStringVal;
}

}
Send_AT_Command("*AT+SetMotor:[Sense],[1],[0],[Off]""); //Sense stop

End_of program();
}

45

The inputString received from SENSE is a string and we cannot compare it with float values.

The function InputString_to val(); converts the inputString string to a float value called
inputStringVal.

Before proceeding, print two black lines as follows:

46

1.4.3 Moving along a black line
To move the SENSE along a black line we use turn procedures of the SENSE.

In turns, one wheel rotates and the other wheel stops. This way the SENSE still moves forward while
turning.

In the main program, we do the movement according to the following idea:

Turning left until the SENSE find a black surface, and then turning right until the SENSE find a white
surface.

int main (void)

float BLACK = 250;
float VAL;

NVIC_SetVectorTable(NVIC VectTab_FLASH, INTERUPT_VECTOR_START);
USARTL Interupt_Init();
__enable_irg(); // (Enable Interrupts)

Send_AT_Command(**'AT+SetSpeed:[Sense],[1],[0],[150]""); //Set Sense speed

VAL =900;

while (1)

{
Send_AT_Command(""AT+SetMotor:[Sense],[1],[2],[CW]""; [[Turn left
Send AT _Command(""AT+SetMotor:[Sense],[1],[1],[Off]'");
while(VAL > BLACK)

Send_AT_Command(""AT+GetlInput:[Sense],[1],[1]");

if((stringComplete)&&(inputString[0] !="F)&&(inputString[1] !='a")
{
InputString_to_val(); //update inputStringVal
VAL = inputStringVal;
}
}

Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[CwW]""); /[Turn right
Send_AT_Command(""AT+SetMotor:[Sense],[1],[2],[Off]'");

while(VAL <= BLACK)

Send_AT_Command(""AT+GetInput:[Sense],[1],[1]"");
if((stringComplete)&&(inputString[0] !="F")&&(inputString[1] I="a"))

InputString_to_val(); //update inputStringVal
VAL = inputStringVal,
}
}
}
}

47

Before proceeding, print on a full page a black line as the following:

The width of the line should be at least 3 cm.

48

Procedure:

Enter the CARM_Project library and double click on the file CARM_Project.Uuvproj.

Check that main.c and main.h are open as in the following screen.

B CACARM-202\CARM_Project VI\CARM_Project uvproj - pVisiond - o %
) 4 dl
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
(S @] B[w PR R EEE G B W Vae@ecs @y
& [B @ | 58| carmproject v AR
Functions 10| [mane |[2] weinnl v x
L# dataflash_page_erase (int32_t ~ 634 -
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
& dataflash_read_Manufacturer, 637
& TIM5_DAC_IRQHandler (void) :zg
& USART1_IRQHandler (void) o | ——
& Sc_send (charsc) it 541 I-_—'I'[
@ Send_serial (char c[]) 642 /*
& USARTZ_IRQHandler (void) 643 | //
@ Char_to_Str (unsigned char <) 644 | //
§ PC_send (char sc) 645
@ Print_to_pc_msg (char msg(]) 646 unsigned char temp;
& Print_to_pc inputString (void] ::;
& Send_AT_Command (char Co £49
$ Leds_Out {unsigned char Led: 650
& Switches_In (void) 651
& main (void) 652
i 653
654
- () system_stm32f10c.c £25
B L] sy v 656
< ¥ 657 "/ L
& Project| @ Books () Func..._lﬂ...'c mp < 2
Scroll down the main() program until you get the following screen:
EC:\CARM_Pm'ec! V1.5\CARM_Projectuvpraj - pVisiond = a] ®
) J) Prel
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
DEd@| » L@ | B ™ = Uz | @ Receved_char Vael@Qleoco @A
& (3 @ | ¥ carmProjeat M&| &R
| Functions L =] [Z] Mm.r.D_Mahl.h 3
& [2] Main.c 1028 /*
®- [Mainh 1029
B D core_cmi.c 1030 | // sensor value to PC
B |=) system_stm32f10w.c 1031 | /f e
D s 1032
1033 iz
1034
1035 nterrupt Vector Table base location at address INTERUPT_VECIOR_START
1038 orTable (NWIC VectTab FLASH, INTERUPT VECIOR START);
1037
1038 :
1039 ;
1040 ‘nable Interrupts)
1041
1042 while (1)
1043
1044
1045 //5end GetInput to Sense with ID=1 and waits for answer
1046 Send AT Command ("AT+GetInput:[Sense], [1],[2]");
1047
1048 if ((scringComplece) && (inputScring[0] '= 'F')&& (inpucScring[l] != 'a'})
1049 {
- 1080 Print tA e maa [" Front asnanr = ® 3 ;
Eproject | @ Books () Funat... < >

This section contains the Sending front sensor value to PC program.

49

4. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

l'_JC:_CAP.\u‘a_Prc;eclV1.S\CARM_Pro_:ect.uvp:cj - pVisiond o
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
=a" N B9 | - E IE /= fl| [Received_Char Y2 dq e & B A
& & & ¥ carmM_Project F3F
Functions L8 x| [¥] Mainct [] Main.h ¥
B [, Main.c 1028 | / | Iz
B] Mainh 1029

@[] core_emi.e 1030
B [system_stm32f10ec

1035 // Set the Interrupt Vector Table base location at address INTERUPT VECTOR START
1036 RVIC SetVectorTable (NVIC VectTab FLASH, INTERUPT VECTOR START):
1038 USARTL_Interupt_Init();

1039 USARTZ_Interupt_Init();

1040 __enable_irg(); // (Enabl

1048 if((stringComplete) && (inputString[0] != *F')&& (inputString[l] != 'a‘')}
1049 |
1N50 Print tn ne man (" Frant apnanr = "

[Eroect | @sooks {3 Funct..| Dy rempi]| || < oo B >

1.4.4 Printing sensor values

1. Change the program to print the bottom sensor value. The two required changes are marked by
arrows.

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USART1 Interupt_Init();
USART2_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

while(1)

{

//Send Getlnput to Sense with ID=1 and waits for ansvier
Send_AT_Command(""AT+Getlnput:[Sense],[1],[1T);

if((stringComplete) &&(inputStringf0] !'= 'F")&&(inputString[1] '="a"))
{
Print_to_pc_msg (' Bottom sensor ="");
Print_to_pc_inputString ();
}
for (i=1;i!=4000000 ; i++);
}
}

50

2. Save the program by clicking on the Save icon ﬂ .

3. Activate the compiler by clicking on the Rebuild icon
Check that there are no errors and no warnings.

4. If there are errors, repair the errors and repeat steps 2 and 3 again.

5. Connect the CARM-202 module to the PC by the USB communication cable.

6. Plug the CARM-202 module into the left socket of the SENSE.

7. Plug the BAT-202 battery module into the right socket of the SENSE.

It does not matter where we plug the modules.
We do so for the convenience of connecting the communication cable.

8. Find the CARM-I program in the CARM exercises directory and double click on it.

You can also click on its icon ‘w2 0N the desktop.

The following screen will appear.

< CARM-202 V3 01

|CAPPCARM_Project V1. 4\CARM_Project hex Browse...|

S
Nr |

Module is connected

9. Click on the Browse button and use the browser to find the file CARM_Project.hex.

Click on this file.

10.

11.

12.

13.

14.

15.

16.

17.

51

Click on the Open Terminal button and you will get the following screen.

Put the SENSE on white surface.

L ¥
Download the program by clicking on the Download 4l button.

Click on the Run = ~% button to run the program.

The bottom sensor values will be printed on the screen every one second.
Record the value of the sensor when the SENSE is on a white surface.
Put the SENSE on black surface and observe the displayed values.

Record the value of the sensor when the SENSE is on a black surface.

L

Press the Stop | to stop the program's running.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

52

1.4.5 SENSE to a black line and stop

1. Scroll down until you get the following screen:

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

EdJ F S ™ = 5 JE js | @ Received_char VRe Qe S@ - | A
A 5 | caRM_Project v & &
Functions L~ | 2] Maine |] Mainh ¥
&[] Main.c 1099 /+
- |] Main.h 1100
B |=] core_emi.c 1101

B =] system_stm32f10x.c

EProject | @ pooks) Funct..| Dy Templ.| || € >
This section contains the Sense forward to a black line and stop program.

2. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line.

3. Observe the program and compare it with the exercise program.

int main (void)

float BLACK = 250;
float VAL;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USARTZL_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command("'AT+SetSpeed:[Sense],[1],[0],[150]""); //Set Sense speed
Send_AT_Command("'AT+SetMotor:[Sense],[1],[0],[Cw]""); //Sense forward
VAL =900;

while(VAL > BLACK)

{

Send_AT_Command(""AT+Getlnput:[Sense],[1],[1]");
if((stringComplete)&&(inputString[0] !'= 'F")&&(inputString[1] !='a"))
{

InputString_to_val(); //update inputStringVal
VAL = inputStringVal;
}

}
Send_AT_Command(""AT+SetMotor:[Sense],[1],[0],[Off]""); /[Sense stop

End_of _program();
}

10.

11.

12.

13.

53
Save the program.
Compile the program and check for errors.

Put the SENSE on white surface with a black line in front.

s
Download the program by clicking on the Download J button.

Click on the Run % putton to run the program.
The SENSE will move forward and stop on the black line.

Change the program so the SENSE stops on the black line, waits two seconds and then moves
backward for two seconds.

Save the program.

Compile the program and check for errors.

s
Download the program by clicking on the Download J button.
Click onthe Run' ~% putton to run the program.

Check the SENSE movement.

1.4.6 Moving to a black line in an endless loop

1.

Change the program so that the SENSE goes forward and stops when it meets the black line,
goes back for 3 seconds, and forward again in endless loop.

Add for the endless movement the following loop:
while (1)
{

Movement program

}

Save the program.

Compile the program and check for errors.

s
Download the program by clicking on the Download J button.

Click on the Run % putton to run the program.

Check the SENSE movement.

54

1.4.7 Moving between two black lines

1.

7.

Change the program so that the SENSE goes forward and stops when it meets the black line,
waits for 2 seconds, goes back until it meets the second black line, waits for 2 seconds, and
forward again in endless loop.

Note:

When the SENSE changes direction, it should move a little without checking the bottom sensor,
in order to be sure that it is out of the black line.

Add short delay after each changing direction instruction.

Save the program.

Compile the program and check for errors.

Put the SENSE on white surface with two black lines, between the two lines.

 §
Download the program by clicking on the Download J button.

Click on the Run % button to run the program.
Check the SENSE movement.

Run the SENSE without the communication cable.

1.4.8 Challenge exercise — Between a wall and a line (1)

Task 1: Improve the program so that the SENSE will move between a wall in front and a black

line at the back.

Note:
You have to use the Front sensor while moving forward. Take care for the compare sign
(> or<).

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

55

1.4.9 Moving along a black line

1. Scroll down until you get the following screen:

File Edit View Project Flash Debug Peripherals Tools SVC5 Window Help

=2=K-| 1] | Lol iE IF [/i | (@ |Received_Char . Ae Qe & & = v| %

&= E | §8 | carm_project v & B E
Functions L [#] maine [J] Mainh v
- 5] Main.c 1134 [/~
- [=] Mainh 1135
) j core_cmi.c 1136 | // 5Sense along a black line
- [=] system_stm32fi0x.c 1137 | //

=l ey 1138 float 250;
1139 float
1140

1141 NVIC_ SetVectorTable (NVIC VectTab FLASH, INTERUPT VECTOR_START):

1143 USART1 Interupt_Inic():
1144 __enable_irqg(): / (Enable Interrupts)

@rroject | @Books {} Funct..[Dy Templ...| || < B0 R R A s A e >
This section contains the Sense along a black line program.

2. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line.

56
3. Observe the program and compare it with the exercise program.

int main (void)

float BLACK = 250;
float VAL;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);
USART1 Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

Send_AT_Command("'AT+SetSpeed:[Sense],[1],[0],[150]""); //Set Sense speed

VAL =900;
while (1)

{
Send_AT_Command("*'AT+SetMotor:[Sense],[1],[2].[CW]™); /[Turn left

Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[Off]'");
while(VAL > BLACK)

{

Send_AT_Command("'AT+GetInput:[Sense],[1],[1]"");
if((stringComplete) &&(inputString[0] !'= 'F")&&(inputString[1] !='a"))
{

InputString_to_val(); //update inputStringVal
VAL = inputStringVal;

}

}

Send_AT_Command(*'AT+SetMotor:[Sense],[1],[1],[Cw]™); /[Turn right
Send_AT_Command(*"'AT+SetMotor:[Sense],[1],[2],[Off]"");

while(VAL <= BLACK)
{

Send_AT_Command(""AT+GetlInput:[Sense],[1],[1]"");
if((stringComplete) &&(inputString[0] = 'F")&&(inputString[1] !='a"))
{
InputString_to_val(); //update inputStringVal
VAL = inputStringVal;
}
}
}

}
Note:

Pay attention to the compare signs (< and >).
4. Save the program.
5. Compile the program and check for errors.

6. Put the SENSE on white surface near the black circle.

L ¥
7. Download the program by clicking on the Download J button.

57

8. Clickonthe Run “% putton to run the program.
The SENSE should move along the black line.

9. Change the value of the Black variable to create smooth movement of the SENSE.

1.4.10 Moving along a black line and stop
1. We shall improve the program so the SENSE stops when you put your hand in front of it.
Change the program to the following according to the bold sections:

int main (void)

{
float BLACK = 250;
float STOP =300;
float VAL, FRONT;

NVIC_SetVectorTable(NVIC VectTab FLASH, INTERUPT_VECTOR_START);
USART1_Interupt_Init();
__enable_irq(); // (Enable Interrupts)

Send AT _Command("'AT+SetSpeed:[Sense],[1],[0],[150]'"); //Set Sense speed

FRONT =0;
VAL =900;
while (1)
{
Send_AT_Command("AT+Getlnput:[Sense],[1],[2]""); //ICheck front sensor
if((stringComplete) &&(inputString[0] != 'F')&&(inputString[1] !="a"))
{
InputString_to_val(); /lupdate inputStringVal
FRONT = inputStringVal;
}

if FRONT > STOP)
{
Send_AT_Command(**AT+SetMotor:[Sense],[1],[0],[Off]""); //Stop the SENSE
do
{
Send_AT_Command(""AT+Getlnput:[Sense],[1],[2]'"); //Wait until obstacle is out
if((stringComplete)&&(inputString[0] !'= 'F')&&(inputString[1] !="a"))
{

InputString_to_val(); //update inputStringVal
FRONT = inputStringVal;
}
}while (FRONT > STOP);

}

}

58

Send_AT_Command(*'AT+SetMotor:[Sense],[1],[2],[Cw]""); [[Turn left
Send_AT_Command("*AT+SetMotor:[Sense],[1],[1],[Off]'");
while(VAL > BLACK)
{
Send_AT_Command("AT+GetInput:[Sense],[1],[1]""); //Check bottom sensor
if((stringComplete) &&(inputString[0] != 'F')&&(inputString[1] !="a"))
{
InputString_to val(); //update inputStringVal
VAL = inputStringVal;
}
}

Send_AT_Command("AT+SetMotor:[Sense],[1],[1],[Cw]™); [[Turn right
Send_AT_Command("*AT+SetMotor:[Sense],[1],[2],[Off]'");
while(VAL <= BLACK)
{
Send_AT_Command("AT+GetInput:[Sense],[1],[1]""); //Check bottom sensor
if((stringComplete) &&(inputString[0] != 'F')&&(inputString[1] !='a"))
{
InputString_to _val(); //update inputStringVal
VAL = inputStringVal;
}
}

In every cycle, the main procedure checks the distance from the wall and calls the STOP
instruction when the SENSE is close to the wall.

In control systems, we usually prefer that the OFF condition value will be different from the
ON condition value. The reason is that we want to avoid having the system "bounce".

Put your hand in front of the SENSE, while it moves.

Change the values of the variables until the SENSE works well.

59

1.4.11 Challenge exercise — Along a complex black line

Task 1: Create different black lines for the SENSE and check its behavior. Improve the programs
when needed.

Example of a complex line:

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

60

Experiment 1.5 — Movement Along Walls

Objectives:

. Program that reacts to side sensors.

" Moving the SENSE along walls.

. Moving the SENSE along walls and stopping it.

Moving the SENSE along walls and turning it around.

Equipment required:

= Computer

. SENSE autonomous

. CARM-202 C coding unit
. BAT-202 battery module

Discussion:
In this experiment, we will move the SENSE along walls.

We will learn how to read and react to the Front right sensor.

1.5.1 Movement along walls

To move the SENSE along a wall, we use the same algorithm of moving the SENSE along a black
line. We use the turn commands.

= Turn left when the SENSE is too close to the wall.
= Turn right when the SENSE is far from the wall.

To go along a wall on the right, we use the front side range sensor.

The side range sensors are installed in 45° to the SENSE base.

When the SENSE turns to the right, the measured distance is smaller than when it turns to the left.

Think what will happen if the range sensor is parallel to the wall.

61

1.5.2 The SENSE right front sensor

The following program prints on the terminal screen the read values from the bottom sensor (1) every
one second.

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USART1_Interupt_Init();
USARTZ2_Interupt_Init();
__enable_irq(); // (Enable Interrupts)

while(1)
{

//Send GetSensorValue to Sense with ID=1 and waits for answer
Send_AT_Command(""AT+Getlnput:[Sense],[1],[6]"");

if((stringComplete) &&(inputString[0] != 'F")&&(inputString[1] !'="a"))

Print_to_pc_msg (** Front right sensor =);
Print_to_pc_inputString ();

}
for (i=1;i!=4000000 ; i++);

}
}

In this program we use the two UARTSs. USART1 for communication with the SENSE and the
USART?2 for communication with the PC.

The function Send_AT_Command sends through USART1 the string:
"AT+Getlnput:[Sense],[1],[6]""
Sensor No. 6 is the front right sensor.

The function waits for the sensor value from the SENSE and puts it in a string called inputString. If
no answer received, the inputString will be "False™.

The program checks that the received string is not "False".
If not, prints ** Front right sensor = ** and the sensor value.

The function Print_to_pc_inputString (); prints the inputString with carriage return and line feed.

62

1.5.3 Moving along walls

To move the SENSE along turn commands of the SENSE.

In turns, one wheel rotates and the other wheel stops. This way the SENSE still moves forward while
turning.

In the main program, we do the movement according to the following idea:

Turning right until the SENSE is close to the wall, and then turning left until the SENSE is far from
the wall.

int main (void)

{
float WALL =300;
float VAL;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USART1_Interupt_Init();
__enable_irq(); //(Enable Interrupts)

Send_AT_Command(""AT+SetSpeed:[Sense],[1],[0],[150]""); /ISet Sense speed

VAL =0;
while (1)
{
Send_AT_Command("AT+SetMotor:[Sense],[1],[2],[CwW]"); //Turn left
Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[Off]"");
while(VAL >= WALL)
{
Send_AT_Command(""AT+GetInput:[Sense],[1],[6]""); //Check Front right sensor
if((stringComplete) & &(inputString[0] != 'F")&&(inputString[1] !='a"))
{

InputString_to_val(); //update inputStringVal
VAL = inputStringVal;
}
}

Send_AT_Command("'AT+SetMotor:[Sense],[1],[1],[Cw]""); //Turn right
Send_AT_Command(""AT+SetMotor:[Sense],[1],[2],[Off]"");
while(VAL < WALL)

Send_AT_Command(""AT+GetInput:[Sense],[1],[6]""); //Check Front right sensor
if((stringComplete) &&(inputString[0] = 'F")&&(inputString[1] !='a"))

InputString_to_val(); //update inputStringVal
VAL = inputStringVal;

Note:
Pay attention to the compare signs (< and >).

Before proceeding, prepare a box for the SENSE to go around it.

Take care that the box is not black or with dark color. White box is better.

63

Procedure:

Enter the CARM_Project library and double click on the file CARM_Project.Uuvproj.

Check that main.c and main.h are open as in the following screen.

B CACARM-202\CARM_Project VI\CARM_Project uvproj - pVisiond - o %
) 4 dl
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
(S @] B[w PR R EEE G B W Vae@ecs @y
& [B @ | 58| carmproject v AR
Functions 10| [mane |[2] weinnl v x
L# dataflash_page_erase (int32_t ~ 634 -
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
& dataflash_read_Manufacturer, 637
& TIM5_DAC_IRQHandler (void) :zg
& USART1_IRQHandler (void) o | ——
& Sc_send (charsc) it 541 I-_—'I'[
@ Send_serial (char c[]) 642 /*
& USARTZ_IRQHandler (void) 643 | //
@ Char_to_Str (unsigned char <) 644 | //
§ PC_send (char sc) 645
@ Print_to_pc_msg (char msg(]) 646 unsigned char temp;
& Print_to_pc inputString (void] ::;
& Send_AT_Command (char Co £49
$ Leds_Out {unsigned char Led: 650
& Switches_In (void) 651
& main (void) 652
i 653
654
- () system_stm32f10c.c £25
B L] sy v 656
< ¥ 657 "/ L
& Project| @ Books () Func..._lﬂ...'c mp < 2
Scroll down the main() program until you get the following screen:
EC:\CARM_Pm'ec! V1.5\CARM_Projectuvpraj - pVisiond = a] ®
) J) Prel
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
DEd@| » L@ | B ™ = Uz | @ Receved_char Vael@Qleoco @A
& (3 @ | ¥ carmProjeat M&| &R
| Functions L =] [Z] Mm.r.D_Mahl.h 3
& [2] Main.c 1028 /*
®- [Mainh 1029
B D core_cmi.c 1030 | // sensor value to PC
B |=) system_stm32f10w.c 1031 | /f e
D s 1032
1033 iz
1034
1035 nterrupt Vector Table base location at address INTERUPT_VECIOR_START
1038 orTable (NWIC VectTab FLASH, INTERUPT VECIOR START);
1037
1038 :
1039 ;
1040 ‘nable Interrupts)
1041
1042 while (1)
1043
1044
1045 //5end GetInput to Sense with ID=1 and waits for answer
1046 Send AT Command ("AT+GetInput:[Sense], [1],[2]");
1047
1048 if ((scringComplece) && (inputScring[0] '= 'F')&& (inpucScring[l] != 'a'})
1049 {
- 1080 Print tA e maa [" Front asnanr = ® 3 ;
Eproject | @ Books () Funat... < >

This section contains the Sending front sensor value to PC program.

64

4. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

l'_JC:_CAP.\u‘a_Prc;eclV1.S\CARM_Pro_:ect.uvp:cj - pVisiond o
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
=a" N B9 | - E IE /= fl| [Received_Char Y2 dq e & B A

& 3 & 3 | carm_project v &K
Functions 28 [¥] Mainct [] Main.h ¥
B [, Main.c 1028 | / | Iz

B] Mainh 1029
@[] core_emi.e 1030
B [system_stm32f10ec

1035 // Set the Interrupt Vector Table base location at address INTERUPT VECTOR START
1036 RVIC SetVectorTable (NVIC VectTab FLASH, INTERUPT VECTOR START):
1038 USARTL_Interupt_Init();

1039 USARTZ_Interupt_Init();

1040 __enable_irg(); // (Enabl

1048 if((stringComplete) && (inputString[0] != *F')&& (inputString[l] != 'a‘')}
1049 |
1N50 Prin n ne man (" Front asnanrt = ")

— rint t = :
] t @ k {} Fundt... [], emp < >

1.5.4 Printing sensor values

1. Change the program to print the bottom sensor value. The two required changes are marked by
arrows.

int main (void)
{
unsigned int i;

NVIC_SetVectorTable(NVIC_VectTab_FLASH, INTERUPT_VECTOR_START);

USART1 Interupt_Init();
USART2_Interupt_Init();
__enable_irqg(); // (Enable Interrupts)

while(1)

/1Send GetSensorValue to Sense with ID=1 and Wmnswer
Send_AT_Command("*AT+GetInput:[Sense],[1],[6]"");

if((stringComplete) & & (inputString[0] != 'F')&&(inputString[1] !="a"))
{
Print_to_pc_msg (' Front right sensor =");
Print_to_pc_inputString ();
}
for (i=1;i!=4000000 ; i++);
}
}

65

2. Save the program by clicking on the Save icon ﬂ .

3. Activate the compiler by clicking on the Rebuild icon
Check that there are no errors and no warnings.

4. If there are errors, repair the errors and repeat steps 2 and 3 again.

5. Connect the CARM-202 module to the PC by the USB communication cable.

6. Plug the CARM-202 module into the left socket of the SENSE.

7. Plug the BAT-202 battery module into the right socket of the SENSE.

It does not matter where we plug the modules.
We do so for the convenience of connecting the communication cable.

8. Find the CARM-I program in the CARM exercises directory and double click on it.

You can also click on its icon ‘w2 0N the desktop.

The following screen will appear.

& CARM-202 V301

| C:ABRCARM_Project V1 4ACARM_Project hex Browse. .. |

LY
N1

Module is connected

9. Click onthe Browse E: :J putton and use the browser to find the file CARM_Project.hex.

Click on this file.

10.

11.

12.

13.

14.

15.

66

Click on the Open Terminal button and you will get the following screen.

Put the SENSE with its right sensors close to the box.

L ¥
Download the program by clicking on the Download 4l button.

Click on the Run = ~% button to run the program.
The program downloaded into CARM-202 and runs.
The front right sensor values will be printed on the screen every one second.

Record the value of the sensor when the SENSE is 4 cm parallel to the box.

Press the Stop % | to stop the program's running.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

67

1.5.5 Moving along walls

1. Scroll down until you get the following screen:

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
= d @ ! e) | " | €2 IE fi= f/z | @ Received_Char FEEW @1| ® & B~ A
& [EH 5 1| %8| carm_project M K| AR
| Functions L] [3] maint |] Mainh ¥

I & ;] Main.c 1182 H/*

@- [Mainh 1183

- | core_cmi.c ilg4 &

M- =] system_stm32f10x.c 1185 | //
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1704 ti N1 t= '"FONEE CintmtSeringl Aty

< >

i, INTERUPT_VECTOR_START);

s £} Funct..| Dy Temp

This section contains the Sense along walls program.

2. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line.

68

3. Observe the program and compare it with the exercise program.

int main (void)

{
float WALL = 300;

float VAL;
NVIC_SetVectorTable(NVIC VectTab_FLASH, INTERUPT VECTOR_START);

USARTL1_Interupt_Init();
__enable_irq(); //(Enable Interrupts)

Send_ AT _Command(*'AT+SetSpeed:[Sense],[1],[0],[150]""); //Set Sense speed

VAL =0;
while (1)

Send_AT_Command(""AT+SetMotor:[Sense],[1],[2],[Cw]"); /[Turn left
Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[Off]'");
while(VAL >= WALL)

{
Send_AT_Command(""AT+GetInput:[Sense],[1],[6]""); //Check Front right sensor
if((stringComplete) &&(inputString[0] != "F)&&(inputString[1] !='a")
InputString_to_val(); //update inputStringVal
VAL = inputStringVal;
}
}

Send_AT_Command(""AT+SetMotor:[Sense],[1],[1],[CW]™); /[Turn right
Send_AT_Command(""AT+SetMotor:[Sense],[1],[2],[Off]'";
while(VAL < WALL)

Send_AT_Command(""AT+GetInput:[Sense],[1],[6]""); //Check Front right sensor
if((stringComplete) & &(inputString[0] = "F)&&(inputString[1] !='a"))
{

InputString_to_val(); //update inputStringVal
VAL = inputStringVal;

Note:
Pay attention to the compare signs (< and >).

4. Save the program.
5. Compile the program and check for errors.

6. Put the SENSE on the left side of the box.

69

L ¥
7. Download the program by clicking on the Download J button.

8. Clickonthe Run % putton to run the program.
The SENSE should move around the box.

9. Change the value of the Black variable to create smooth movement of the SENSE.

1.5.7 Challenge exercises — Moving along walls

Task 1: Improve the program so the SENSE goes forward when it does not sense a wall on its
right side.

The SENSE stops when it meets a wall, turns to the left and starts moving along this wall.
Save this program under the name WALL2.
Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

70

Challenge 1.6 — Counting

Draw block lines on a white paper.

Create a program that moves the robot through the block lines and make it stop on the fourth line.

Use variables to count the lines.

Challenge 1.7 — Automatic movement

Create a program that moves the robot according to the following figure:

3 4

6

Challenge 1.8 — Loops

Use loop commands to make the robot do the following cycles 3 times.

3 4

71

Challenge 1.9 — Loops and procedures

Convert each turn and forward movements into a procedure so the main program will have only the
loop and run procedure instructions.

The program should do the same as the program in challenge 1.8.

Challenge 1.10 - ""Don't touch me"" robot

Create a "Do not touch me" program.

The robot should move away when you bring your hand close to one of its range sensors.

Challenge 1.11 — Robots in a convoy

Put two robots on a black line.
The first robot should move along the black line and stop every 10 seconds.

The second robot should move along the black line and stop when it is close to the first robot.

72

Challenge 1.12 — Movement in a labyrinth

Build a labyrinth as follows:

START

]

Create a program that moves the robot from the START point to the FINISH point without touching
the walls.

73

Challenge 1.13 — Exiting a circle

Draw a wide black line as follows:

Put the robot inside the circle.
The robot should not cross the black line or move along the black line.

Create a program that makes the robot exit the circle according to the above rules.

Challenge 1.14 — Moving along corridors

Build the following corridor model:

e . 2 Il 4
o e o
< \) <
s 2 2 i ————|

The corridor's and the doors' widths are about 20cm.
The robot should move in the corridor without getting out through the doors.

Create a program that answers this challenge.

74

Chapter 2 — Brain Units

2.1 Brain units

Some of the input units can have their own "brain". The NeuLog sensors are such brain units. They
send to the control unit, upon request, processed data such as: temperature (°C or °F), light intensity
in Lux, distance in meters, etc.

The output units can also be brain units. For example, units that control the motor speed and direction,
lamp intensity, servo motor angle, etc.

These brain units are connected in a chain to the main control unit, which communicates with them
through messages.

Every brain unit has an ID number. Every message from the control unit starts with ID number. Only
the brain unit with this ID number interprets the message and executes it.

This system construction is the way modern systems are built, and has important advantages:

1. It creates a system with much less wires. The wires go from one module to another and not
from all modules to the control unit.

2. This kind of system can easily be changed and expanded, and does not depend on the control
units number of inputs and outputs.

The experiments in this chapter use the following brain units:

NeuLog light sensor (NUL-204)
NeuLog sound sensor (NUL-212)
NeuLog motion sensor (NUL-213)
NeulLog magnetic sensor (NUL-214)
Brain tracking unit (SNS-101)

Brain gripper arm (SNS-167)

If you do not have them, you can read about them and move to chapter 3.

Chapter 3 experiments are with The SENSE robot and battery module.

75

2.2 NeulLog sensors as brain units

NeuLog sensors (Neuron Logger Sensors) are also brain units. Each sensor includes a tiny computer,
which samples, processes and stores the sampled data. Each probe connected to the sensor is pre-
calibrated in the factory and no further calibration is required.

The data provided by the sensor is processed digital data. The sensor includes different measurement
ranges. Changing the measuring range or type of processing is done simply on the computer screen
with NeuLog software.

The sensors are plugged to each other with almost no limitation on the composition and number of
sensors in the chain.

NeuLog has over 50 different sensors. Some sensors perform as two to three sensors.

The SENSE has three sockets for NeuLog sensors.

76

Experiment 2.1 — Sound Sensor

Objectives:

u The sound sensor.
. Operating the SENSE by sound.

Equipment required:

u Computer

. SENSE autonomous

. CARM-202 C coding unit

. BAT-202 Battery module

u NUL-212 NeulLog sound sensor

Discussion:
The sound sensor uses an internal microphone and special amplifier. Sound waves enter through the
hole in the top of the sensor’s plastic body so you should point that directly towards the sound source
for best readings.

The sound sensor has two modes (ranges) of operation:

1. Arbitrary analog units (Arb) — An arbitrary unit indicates a number according to signal shape.
At this mode, the sound is sampled and reconstructed as a signal.

2. Decibel (dB) — A unit of measure to show the intensity (loudness of sound). Please note that
this is a logarithmic unit.

At this mode, the wave is sampled and the average intensity (calculated by the sensor controller)
is converted into dB value. 40 dB represents silence.

In this experiment, we shall use it at dB mode and we assume its ID is 1 as the default ID.

Selecting the range should be done by the NeuLog software.

77

Procedure:

1. Enter the CARM_Project library and double click on the file CARM_Project.Uvproj.

2. Check that main.c and main.h are open as in the following screen.

A C\CARM-202\CARM _Project VI\CARM_Project uvproj - pVisiond - o %
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
(S @] B[w PR R EEE G B W Vae@ecs @y
& [B @ | 58| carmproject v AR
Functions 10| [mane |[2] weinnl v x
L# dataflash_page_erase (int32_t ~ 634 -
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
& dataflash_read_Manufacturer, 637
& TIM5_DAC_IRQHandler (void) :zg
& USART1_IRQHandler (void) o | ——
& Sc_send (charsc) it 541 I-_—'I'[
@ Send_serial (char c[]) 642 /*
& USARTZ_IRQHandler (void) 643 | //
@ Char_to_Str (unsigned char <) 644 | //
§ PC_send (char sc) 645
@ Print_to_pc_msg (char msg(]) 646 unsigned char temp;
& Print_to_pc inputString (void] ::;
& Send_AT_Command (char Co £49
$ Leds_Out {unsigned char Led: 650
& Switches_In (void) 651
& main (void) 652
i 653
654
- () system_stm32f10c.c £25
B L] sy v 656
< ¥ 657 "/ L
& Project| @ Books () Func..._lﬂ...'c mp < 2
3. Scroll down the main() program until you get the following screen:
C:\C.\\RM_Ferec! V1MNCARM_Project.uvproj - pVisiond - o ®
File Edit View Project Flash Debug FPeripherals Tools SVCS Window Help
= A N AR) | ™ iE i 5 /5| @ Received Char Y BeQ e [a' | %
& E e]] crMPoje Iy A
| Functions L] 3 (2] Mainc E] M;kl.h ¥
8 @ Main.c 1196 [/*
#- [Main.h 1197
ol B core_em3.c 1198 | // Sense to a wall with sound sen
B[system_stm32f10x.c 1199 | //
- [system.: 1200
1201
1202
1203
1204 NVIC SetVectorTable (NVIC VectTab FLASH, INTERUFT VECTOR_START);
1205
1206 USART1 Interupt Inic():
1207 __enable izrqg(): // Enable Interrupts)
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218 |
ect @i-a-;-. “Furlﬁ...l[],':'.'pi.. < >

This section contains the Sense to a wall with sound sensor program.

78

Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

KA CACARM_Project V1.4\CARM_Projectuvproj - pVisiond o %

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

E 4 d @9 | Lo = iE JE [Received_Char vi B | -@1 @ @B N
T %% | CARM_Project v & &
Functions L~ | [*] mainer | [] Mainh A
&~ [Main.c 1196
-] Main.h 1197
ol _._] core_cmi.c 1198 Sense to a wall with aound sensor
1199 | // ————— —

- [system_stm32f10x.c

1200 floac STOP = 350:

1201 float SOUND = T0;

1202 float VAL:

1203

1204 HVIC_SetVectorTable (NVIC VectTab FLASH, INTERUPT VECTOR_START):
1205

1206 USART1 Interupt Init();

1207 __enable irqgl(): /s (Enable Interrupts)

1208

1209 VAL = 0;

1210 wh (VAL < SOUND)

1212 /[5e
1213 Send AT C nd T+GetSer [1]"™): //Sends request to module
1214 if ({actringComplece)&& (inpy 1 && (inpucScring[l] '= 'a'))
1215 H {
1216 InputString_to_val(): f/update inputStringVal
1217 VAL = inputStringVal;
— 121 }
[Project | €% {} Funct...| Dy Tempt.| || € >

Observe the program and make sure that you understand all of its instructions.

Pay attention to the instruction:

Send_AT_Command(""AT+GetSensorValue:[Sound],[1]™); //Sends request to module

10.

11.

12.

The AT+GetInput: is replace by AT+GetSensorValue:
Save the program.
Compile the program and check for errors.

Place the SENSE in front of a wall.

Download the program by clicking on the Download ﬂ button.
Disconnect the SENSE from the computer.

Press the CARM-202 Run button.

The SENSE should not move.

Clap your hand or make high sound.

The SENSE should move towards the wall and stop.

79

2.1.1 Challenge exercise — Wait for sound

Task 1: Improve the program so:

(@ The SENSE will wait for a sound above 70 dB, then moves forward until it meets
a wall and then stops for 5 seconds.

(b) 1t will wait again for the sound, moves backward until it reaches a black line and
then stops for 5 seconds.

(¢) Returns to the beginning.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

80

Experiment 2.2 — Motion Sensor

Objectives:

u The motion sensor as distance sensor.
. Moving the robot according to the motion sensor.

Equipment required:

u Computer

. SENSE autonomous

. CARM-202 C coding unit

. BAT-202 Battery module

u NUL-213 NeulLog motion sensor

Discussion:

The motion sensor uses an ultrasonic transducer to both transmit an ultrasonic wave, and to measure
its echo return. Objects in the range of 0.15 to 10 meters can accurately be measured to give distance,
velocity, and acceleration readings using this method.

The motion sensor can collect data using the following measuring units:

= Meters (m) — The Sl (International System of Units) distance unit

= Meters/second (m/s) — The Sl velocity unit, which measures the distance traveled over time.

= Meters/second? (m/s?) — The Sl acceleration unit, which measures the change in velocity over
time.

The motion sensor has two working ranges — one between 0.2 and 10.0 meters and one between 0.15
to 2 meters.

Ultrasonic waves are emitted from the sensor and spread out in a cone pattern at about 15° around the
point of reference.

Motion
sensor

81

The ultrasonic transducer is a device that can convert pulse train to transmitted ultrasonic pulses.
These pulses can sense and convert back to electronic pulse train by another similar ultrasonic
transducer, or by itself.

The ultrasonic transducer is based on ceramic crystal, which is cut in a certain way and is placed
between two metal plates. The crystal is characterized by the piezoelectric effect. Electrical field
changes between the plates create mechanical vibrations in the crystal.

The crystal has a resonance frequency. The mechanical vibrations and electrical reactions depend on
this resonance frequency.

Supplying pulses to the crystal of the ultrasonic transducer (in a rate according to its frequency) causes
it to vibrate and to transmit these pulses as an acoustic sound. This sound cannot be heard because it
is above the hearing frequency range (usually it is at 40KHz).

The acoustic sound can be converted back to electronic pulses by another ultrasonic transducer or by
the transmitter when it stops transmitting. The acoustic pulses vibrate this transducer and these
vibrations are turned into voltage pulses.

The speed of the ultrasonic wave is about 300 m/s because it is a sound wave.

For distance measurement, a burst of the transducer frequency wave is sent and the system measures
the time between the sending and the receiving.

S=300-t

Velocity is calculated by the difference between two successive distances divided by the time between
the samples (according to the sampling rate).

Acceleration is calculated the difference between two successive velocities divided by the time
between the samples (according to the sampling rate).

The motion sensor uses a very sophisticated method that enables it to measure long distance range
with a low power of pulses.

In this experiment, we shall use it at distance range and we assume its ID is 1 as the default ID.
Selecting the range should be done with the NeuLog software.

Procedure:

3.

82

Enter the CARM_Project library and double click on the file CARM_Project.Uvproj.

Check that main.c and main.h are open as in the following screen.

A C\CARM-202\CARM _Project VI\CARM_Project uvproj - pVisiond - o
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
15 d @ B9 | - ® B | iEiE I M| B swn Mae Qe oo @|E- N
& [B @ | 58| carmproject v AR
Functions g A Mainc] Mainh |
L# dataflash_page_erase (int32_t ~ 634
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
© dotaflash_read Manufacturer 63T /LIIIIIIILIIELREEIEL R EREIEELEEEERE LI LTI LI EEL 118011
& TIM6_DAC_IRQHandler {void) :3: LEEEELERELLEREL PR EL LR E R i it iiddsiidsdidddsiddsiridiiidsiis
& USART1_IRQHandler (void) o | ——
& Sc_send (charsc) it 541 I-_—'I'[
@ Send_serial (char c[]) 642 /*
& USARTZ_IRQHandler (void) 643 | // Sw
@ Char_to_Str (unsigned char <) 644 | // =
§ PC_send (char sc) 645
@ Print_to_pc_msg (char msg(]) 646 unsigned char temp;
& Print_to_pc inputString (void] ::; s
& Send_AT_Cammand (char Co id ;:_‘ i
@ Leds Out (unsigned char Led: 650 -
& Switches_In (veid) §51 while (1)
% main (void) 652 i
i 653
654
B 5] system_stm32fi0uc £28
-l v || ess
< ¥ 657 "/
& Project| @ Books () Furw...‘_lﬂ.p'c'l <
Scroll down the main() program until you get the following screen:
k_‘]’ CACARM_Project V1.ACARM Praject.uvpro) - pVisiond = o
‘) /] Proy

._T] Main.c
- [« Main.h
core_cm3.c

- [w] system_stm32f10c.c

EProject | G

{} Fund...| Uy Temp!

File Edit View Project Flash Debug Peripherals
D dé| +« @9

& [# g | 5% carm_project

Functions LA = |

Tools

SVCS Window Help

lz {l5 | @ Received_Char

R Qe

S &|E-|A

Sense to a wall with motion sensor

STOP = 0.

VARL;

float
fleac

NVIC_SetVectorTable (NVIC VectTab_FLASH, INIERU

3=

USARTL Interupt_Inic();
{(Enable Interrupts)

__enable _irqg(); //

_Command ("A
_Command ("A

10:
while (VAL > STOF)
{

SetSpeed: [Sense], [1]1, [0]

m

tMotor: [Sense], [1], [0]. [

Send AT Command ("AT+GetS

alue: [Motion],

11"

PT_VECTOR_START) ;

01"

//Set Sense speed
1"): //Sense forward

//S8ends regquest to module

tring[0]

f= *F')&&(inpucString([1]

//updace inputStringVal

This section contains the Sense to a wall with motion sensor program.

4.

10.

11.

12.

83

Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

KA chcarm Project V1. 4\CARM_Project.uvproj - pVisiond = o

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

15 Ha| @AY | | o | 58 iE j= iz | 9 Received_Char v 2 | f.ﬁl ® & a mEARY
& iy | $%| carm_project o AN
Functions L x| [# mainct | [2] Mainh -
&[] Mainc 1240 | /A /*
&[] Main.h 1241
- [core_cmi.c 1242 | // Sense to a wall with motion sensor
- L) System_stm32f10x.c 1243 |/ P g/
1244 float STCP = 0.3;
1245 float VAL;
1246
1247 WVIC SetVectorTable (NVIC VectTab FLASH, INTERUPT_VECTOR_START);
1248
1249 USART1_Interupt_Init():
1250 __enable_irg(): Enable Interrupts
1251
1252 Send AT Command ("AT+SetSpe J b
1253 Send AT Command ("AT+SetMotor 1"):
1254
1255 VAL = 10;
1256 while (VAL > 5TICF)
1257 H {
1258 Send AT Command ("AT+GetcSensorValue: [Motion],[1]"): //S5ends request to module
12589 if{(scringComplete)&i& (inputScering[0] !'= *F')&& (inputString[l] != ‘*a‘'))
1260 [{
1261 InputString to wval(): Jfupdate inputStringVal
1269 VAT, = inmurSrrinaval:

[Erroject | @soors }Funct [0y Tempr | € >

Observe the program and make sure that you understand all of its instructions.
Save the program.
Compile the program and check for errors.

Plug the NeuLog motion sensor into one of the SENSE socket with its transducer directly to
the front of the SENSE.

You can plug the BAT-202 above the sensor or above the CARM-202.

Place the SENSE in front of a wall.

s

Download the program by clicking on the Download 4| button.
Disconnect the SENSE from the computer.

Press the CARM-202 Run button.

The SENSE should move towards the wall and stop 30 cm away from it.

84

2.2.1 Challenge exercise — Moving in a distance range

Description: Going forward towards a wall, stop 30cm before the wall, then go backward and stop at
50cm from the wall and return.

Task 1: Improve the program so the SENSE will:

= move towards the wall,

= stop 30 cm in front of it,

= wait for 2 seconds,

= go backwards until a distance of 60cm,
= stop for 2 second,

= return to the beginning.

Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

85

Experiment 2.3 — Brain Tracking Unit

Objectives:

. The brain tracking unit.
. Moving to an IR (infrared) transmitter.
. Following an IR transmitter.

Equipment required:

Computer

SENSE autonomous
CARM-202 C coding unit
BAT-202 Battery module
SNS-101 Brain tracking unit
SNS-160IR transmitter

Discussion:

2.3.1 IR Transmitter

The infra-red transmitter can be plugged into any of the SENSE sockets or in the
backup battery socket to be followed by the brain tracking unit.

Infrared light is transmitted from a heat source. We cannot see the IR light. The
frequency of this light is a little below the red light and this is why we call it infra
(before) red.

The surrounding light does not affect this light much.

86

2.3.2 Brain tracking unit

The brain unit, in a rigid plastic case, can be plugged into one of the SENSE sockets.

The brain tracking unit has two IR (infrared) sensors that enables it to track the IR transmitter.

The two IR sensors are at the same line with an opaque partition between them.
When IR light falls on both of them, it means that the SENSE is in front of the IR light source.
When the SENSE is at angle to the light source, the IR light will fall only on one of the IR sensors.

The third IR sensor measures the environment IR light. The brain unit controller uses this
measurement to eliminate the environment light.

The brain unit output is a binary number that describes the detection status of an IR transmitter. This
number is converted to detection results as the following:

0 - None (00) — No IR transmitter light

1 - Right (01) — IR transmitter light on the right
2 — Left(10) - IR transmitter light on the left
3 — Front (11) — IR transmitter light at front

Procedure:

mC:\CARM-ZDP\CARM_ijHcl VILCARM _Projectuvproj - pVisiond

File

G da

&

Edit

& e

Functions

View Project

@A 9

_|m|

-

Flash Debug

CARM_Praject
2@

<

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L]
L]

dataflash_page_erase (int32_t ~
dataflash_write_data (int32 t ¢
dataflash_write_data_without_
dataflash_read_Manufacturer
TIME_DAC_IRQHandler (void)
USART1_IRQHandler (void)
Sc_send (char sc)

Send_serial (char ¢[])
USARTZ_IRQHandler (void)
Char_to_Str (unsigned char s}
PC_send (char sc}
Print_to_pc_msg (char msg[])
Print_to_pc_inputString (void,
Send_AT_Command (char Co
Leds_Cut (unsigned char Led:
Switches_ln (veid)

main (void)

=B :" system_stm32filhec

>

Peripherals

[« p

Tools

87

SVCS Window Help

..‘| S

= E i

e 5 ﬁ :!‘_".

(8] Mainc | [] Mainh |

@ swi

Maer Qe

Check that main.c and main.h are open as in the following screen.

Enter the CARM_Project library and double click on the file CARM_Project.Uuvproj.

S &E-| XN

& Project| @ Books {} Func..[Oy Teme

3.

634
635
636
637
638
639
640

= 641 It

&a2[] /
643 | //
€4a | //

645
646
647
648
649
650
651
652
653
654
655
656
657

EC:\CARM Project V1.ACARM_Projectuvpraj - pVisiond

File

Edit View Project Flash
U d &
| Functions

a@d 9

Debug

%1 | CARM_Project
b |

Peripherals

unsigned

LR L e L

B

fFEEEEEEEE?

main(void)

Leds

Swit

while (1}

«f

Toaols

| e .
| ‘(\| e

SVCS Window Help

A Mmaine | [Mainh

fiLid

TNy

15 Iz | @ Received_Char

fILLEEEE

J &

L

LHLEEIHETEEEE Y

SErEIrEEe

Scroll down the main() program until you get the following screen:

¢ Qe

SR B-| X

o}
®- [
[+

Main.c

3 Main.h

core_cm3.c

[systern_stm32f10e.c

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
12a7
1288
1289
1250
1281
1292
1263

& Project @5-0\: ks £} Fund‘..l 0y Templ..

-~

12710 /*

floatc

HVIC SetVectorTable (NVIC VectTab FLASH,

USART1 Interupt_Ini
enable_irg(); //

Send AT_Command ("AT+Set3p

Send AT Command ("AT

! FRONT)

T():

end AT Command ("AT+GetSensorValue: [
ifilacrinaCornleta) ik finmunSerinalnd

1,001

1. (2]

IRTrack
1= 1

//Set

//Turn

L [1501™) 2

+» [CW1"™):

1. 011"} :

VAR HinmanStrinalll

This section contains the Sense tracking IR transmitter program.

//Sends requestc

Senae speed
lefc

to module

1= 157}

88

4. Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

KA CACARM_Project V1.4\CARM_Project.uvproj - pVisiond - o ®
File Edit View Project Fiash Debug Peripherals Tools 5VCS Window Help
== - B9 . £ = - /5| [Received_Char ~ B e & B-| A

& EE | $%| carm_project o
Functions 2 & [#] Maine | [] Mainh -
B[Mainc 1271 [7/] 7+

®- [i=] Mainh 1272

@[] core_cmi.c 1273 / Sense tracking IR transmitter

§ : 74 | /
@[] system_stm32f10xc 12
'J) 1275
1276
1277
1278
1279
1280
1281 NVIC SetVectorTable (WVIC VectTab FLASH, INTERUFT VECTOR START):
1282

1283 USART1 Interupt Init();

1284 __enable irq():
1285

1288 Send AT Command ("AT+SetSpeed:
1287 Send AT Command ("AT+SetM 32
1288
1289 VAL = 0;
1250 while (VAL =! FRONT)

1291 [i

1292 Send AT_Command {"AT+GetSensorValue: [IRTrack], [1]"); //Sends request to module

LEFT :
FRONT = 3»
VAL:

17493 ififatrinaComml arel AR HinmeeSnrinalnl 1= 'FOLE(innanSerinalll 1= 'at))

B rroect | @Books () Funct..[0,7 < i >

5. Observe the program and make sure that you understand all of its instructions.
6. Save the program.

7. Compile the program and check for errors.

8. Plug the brain tracking unit into the front socket of the SENSE.

9. Plug the IR transmitter into a backup battery.

10. Download the program by clicking on the Download A button.
11. Disconnect the SENSE from the computer.
12. Press the CARM-202 Run button.
The SENSE should rotate to the left searching the IR transmitter.
13. Bring the IR transmitter to be in front of the SENSE.
The SENSE should stop rotating.
14. Move the IR transmitter to the left and to the right.

The SENSE should follow it.

89
2.3.3 Challenge exercise — Tracking a robot with IR
transmitter

Task 1: Improve the program to move the SENSE towards the IR transmitter. The SENSE waits
when it does not detect the IR light.

Task 2: Improve the above program and procedures so the SENSE will stop in front of the IR
transmitter.

Put the IR transmitter on a box or another SENSE that can be detected by the front sensor.
Activate the /* */ signs by deleting the two slashes at the beginning of each line.

The program turns to green.

90

Experiment 2.4 — Brain Gripper Arm

Objectives:

. The brain gripper arm.
. Moving an object from one place to another.
. Drawing pictures with the brain gripper arm.

Equipment required:

= Computer

. SENSE autonomous

. CARM-202 C coding unit
. BAT-202 Battery module

. SNS-167 Brain gripper arm
. A wooden rod

= A marker

Discussion:

2.4.1 Brain gripper arm

The brain gripper arm has two servo motors.

One servo motor moves the gripper up and down.

The second servo motor opens and closes the gripper.

A servo motor is a motor with feedback. The feedback can be voltage according to the motor speed
or the shaft angle, electrical pulses according to the motor shaft rotation and direction, and more.

Each servo motor of the gripper arm has transmission gear and potentiometer. The potentiometer
consists of a variable resistor that create variable voltage according to the servo motor shaft angle.

The brain controller of the gripper arm gets the required angle of the shaft. It turns the motor CW
(Clock Wise) or CCW (Counter Clock Wise) until the potentiometer voltage suits this angle.

It checks the shaft angle all the time. If it changes mechanically, the controller will turn the motor

ON to return the shaft to the right position.

91

Procedure:

1. Enter the CARM_Project library and double click on the file CARM_Project.uvproj.

2. Check that main.c and main.h are open as in the following screen.

ﬂ(:\CARM-ZD?\CARM_P!(Jchl VILCARM _Projectuvproj - pVisiond -
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help

IS @] ¢ @[|| PR R EE @ s VRaeQeco @By
& [B @ | 58| carmproject v AR
Functions g A Mainc] Mainh |
| @ dataflash_page_erase (int32_t A 634
& dataflash_write_data (int32 t ¢ 635
@ dataflash_write_data_without, 636 -
o dotaosh.sesd Manstocures, || ST 1111111111111 LD 1101011010100 10 10111
& TIME DAC_IRQHandler (void) :3: SEFLELETETTREERL LTS ETLTEL LTSI i it idiieits
@ USART1_IRQHandler (void) €40 main(void)
& Sc_send (charsc) it 541 I-_—'I'[
& Send_serial (char ¢[]) 642 /*
@ USARTZ_IRQHandler (void) 643 | //
@ Char_to_Str (unsigned char <) 644
§ PC_send (char sc) 645
& Print_to_pc_msg (char msg[]) 646
& Print_to_pc inputString (void] ::;
& Send_AT_Command (char Co £49
$ Leds_Out {unsigned char Led: 650
& Switches_In (void) 651
& main (void) 652
i 653
654
L M 655
B =] system_stm32fi0xc v cte
< > 657 *f
& Project| @ Books () Furw...‘_lﬂ.p'c'l <
3. Scroll down the main() program until you get the following screen:
K CACARM_Project V1.4\CARM_Project.uvproj - pWisiond =

File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help

=2 - IR 1) rRRA [fi | @ Recewed Char VRe Qec o @ B X
& E 8 @ | $9] carM_Project 3N R
Functions » 3 2] Mmainc] Mainh |
@ [Main.c 1331 /+
] Mainh 1332
-] core_cm3.c 1333 | // Sense with brain arm
] system_stm32f10x.c R | - —————
1335 float S5TOF = 250;
1336 float VAL:
1337
1338 RUPT_VECTOR_START) ;
1339
1340
1341
1342
1343 Send AT | : (11, [Mull], [Open]™); //Arm open
1344 for (£ =1 ; i != 40 i++):
1345
1346 Send AT Command ("AT+Se [BrainArm], [1], [Up], [OCpen]™): //Arm open
1347 for (1 = 1 : 1 != 4000 i++) 2
1348
1349 Send AT Command ("AT+SetSpeed: [Sense), [1],[0],[150]"):; //Set Sense speed
1350 Send AT_Command ("AT+SetMotor: [Sense], [1], [0],[Cw]"): //Sense forward
1351
1352 VAL = 0;
1353 | while (VAT. ¢ STOP)
E Project @E:;-i' £} Funet...| 00, Templ <

This section contains the Sense with brain arm program.

4.

10.
11.

12.

13.

92

Activate the program by making the two remark limit signs to remark lines by adding two
slashes at the beginning of each line and you get the following screen:

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Edg a9] = IE /5| [Received_Char V2 Qe & B- X
& 38 Y5 | carm_Project "3y .
Functions L | [#] maine |] Mainh -
B[] Main.c 1330
® [2] Mainh 1331 | 7+
M | core_cmic 1332
& 1333 / Sense with brain arm
B =] system_stm32f10xc e o T
1335 float
1336 float VAL;
1337
1338 NVIC SetVectorTable (NVIC VectTab FLASH, INTERUPT VECTOR_START);
1339
1340 USART1_Interupt_Init():
1341 __enable_irqg(); / (Enable Interrupts)
1342
1343 Send AT Command ("AT+5Set! full Cpen]") m open
1344 for (1 =1 :;: 1 != 40
1345
1346 Send AT Command ("AT+SetMotor: [BrainArm], [1], [Up], [Openr]™): //Arm cpen
1347 for (1 = 1 ;> 1 != 4000000 ; f++}7
1348
1349 Send AT Command ("AT+5etSpeed: [Sense], [1], [0], e ense ead
1350 Send AT Command ("AT+SetMotor: [Sense], [1],[0], [Cw]"}); //Sense forward
1351
L — 1352 VAT, = -
B rroject | € {} Funct...|)y Temp < >

Observe the program and make sure that you understand all of its instructions.
The program should do the following:

(@ Opens the gripper

(b) Raises the arm

(c) Moves the Sense forward and stops when the wooden rod between the gripper fingers
(d) Lowers the arm to mid position

(e) Closes the gripper

() Raises the arm

(g) Moves forward for 2 seconds

(h) Lowers the arm to mid position

(i) Opens the gripper

() Moves backward for 2 seconds

Save the program.

Compile the program and check for errors.

Plug the brain gripper arm unit into the front socket of the SENSE.

Download the program by clicking on the Download ﬂ button.
Disconnect the SENSE from the computer.

Press the CARM-202 Run button.

Check that the SENSE does its mission.

Change the program to run in endless loop.

Download the program, run and check the SENSE behavior.

93

2.4.2 Challenge exercises — The SENSE with gripper arm

Task 1: Change the last program to use functions instead of chain of instructions. Put the delays
in the functions.

Task 2: Change the program to make the SENSE to rotate in about 90° with the raised wooden
rod before moving forward with it.

Task 3: Plug Sound sensor to the SENSE and make it wait for hand clapping before picking up
the wooden rod.

Task 4: Make the gripper hold a marker manually.
Place the SENSE on wide white paper attached to the ground or to the desk.
Build some drawing programs.

1. Activate the /* */signs by deleting the two slashes at the beginning of each line.

The program turns to green.

94

Chapter 3 — Autonomous Vehicle
Challenges

3.1 Autonomous vehicles

We are in the generation of autonomous vehicles, machine learning and artificial intelligence. This is
the world of machines making decisions. The decisions are according to the software and
programming behind. This is just the beginning.

We can understand this world and the occurring changes by trying to develop programs similar to
autonomous car.

The SENSE is a tool for such challenge exercises.

This chapter introduces several of the challenge autonomous exercises. The idea is to let the user to
think about algorithms and solutions to solve these challenges.

3.2 Programming tips

This chapter is built as a challenge exercise to solve with no guiding.

The Robockly and the Python are rich and powerful coding programs.

They have so any functions and options.

Start your solutions with the Robockly, but observe the Python program too.
When the screen of the Robockly becomes too loaded, move to Python.

Try to work more with functions and not with long chains of instructions.
There are multiple solutions. Try to find the most efficient way.

Do not be afraid to fail and to try repeatedly.

Good Luck!!

95

Challenge 3.1 — Along black lines
3.1.1 Leftand right along a black line

The following is the flowchart of a simple movement along a black line program.

C PrograinStart) C RIGHT)
v

Mem1=Black value Turn Right Fast
v v
Run MAIN C End D)
v

C End)

C LEFT D)
v
C MA_‘I N) Turn Left Fast

v
C End)

Run LEFT

Yes
Bottom < Mem1

Run RIGHT
No|,)

\ 4

C Restart)
|

The robot moves by swinging on the edge of the black line.

Place the robot on the black line, read the bottom sensor value and set it in the program. This value
may be different from one robot to another.

Convert the flowchart to a C language program.

Download, run and check to robot movement.

3.1.2 Smooth movement along a black line

In order to get a smoother movement we can replace one of the turn instructions with a deviate
instruction. This depends on the robot movement direction.

When the robot moves counter clockwise, we shall replace the Right turn command with Right
deviate.

When the robot moves clockwise, we shall replace the Left turn command with Left deviate.

Change the program accordingly, download, run and check to robot movement.

96

3.1.3 Adding Forward movement

Check at Direct mode, the bottom sensor value when it is above the center of the black line and when
it is closer to the edge of the line.

We shall call the read value at the center of the black line BlackC and the black value close to the
edge BlackE.

The following program drives the robot forward when it is on the edge part of the black line.

C PrograinStart) (RIGHT)

v
Mem1=BlackC value Turn Right Fast
v v
Mem2=BlackE value (End)
v
Run MAIN

v
C End D) C LEFT D)
v
Turn Left Fast

C__wan > C = D

Run LEFT

No . (FORWARD)

v
Forward Fast
Run RIGHT v

No T (End)

Yes

Bottom < Mem2

Run FORWARD
No|,)

\ 4

(Restart)

Analyze the flowchart.

Change the program accordingly, download, run and check to robot movement.

97

3.1.4 Along a black line with a stop in front of an obstacle

Improve the previous program to stop in front of an obstacle until the obstacle is removed.

Put your hand in front of the SENSE and check at Direct mode, the front sensor value. We shall call
the read value Obsl.

The following program drives the robot forward when it is on the edge part of the black line.

(PrograinStart) (RIGHT)

v
Mem1=BlackC value Turn Right Fast
v v
Mem2=BlackE value (End)
v
Mem3=0bs1 value
v

Run MAIN C LEFT D)
v v
(End) Turn Left Fast
v
(End)

(FORWARD)
v

Forward Fast

v
(End)
Run RIGHT
: (WAIT)
v

Stop
Run FORWARD v

: Wait until Front < Mem3

Run LEFT

Yes v
Run FORWARD

Run WAIT
No) +
V; C End)

C Restart)
|

Analyze the flowchart. Change the program accordingly, download, run and check to robot
movement.

Front > Mem3

98

Challenge 3.2 — Automatic Guided Vehicle (AGV)

An AGV is a vehicle or a cart that moves along guidelines. It is very popular in manufacturing places
for transporting row materials or sub-assembly systems from one station to another.

Create the following line.

Put a small box on it as in the picture.

Write a program that moves the SENSE along the line and stops in front of the box for 5 seconds,
turns around, moves on the other direction and vice versa.

The SENSE goes on the outer edge.

For this task we have two movements — clockwise and counter clockwise.

The main program should know what the current movement is. To determine that, we use what we
call a flag. The main program operates the required procedure according to the value of a certain
variable.

The value of this variable is changed when changing direction is needed.

Analyze the following flowchart. Memory 4 is the flag variable.

Build the program accordingly, download, run and check to robot movement.

Every robot behaves a little different.

Adapt the program to your robot sensors and behavior.

Take care to stop in front of the box in a distance that enables the robot to rotate.

AGV Program flowchart

99

C_Program Start) C RIGHT D C_ RTURN D
v v v
Mem1=BlackC | Turn Right Fast | | Stop |
v v v
Mem?2=BlackE C End D) | Delay 3 |
L 2 v
Mem3=0bs1 value | Rotate Right Mid |
; C__LEFT_ D ;
Mem4=0 | Turn Left Fast | | Delay 1.5 |
v v v
Mem5=0 C End) Mem4=1
v v
| Run ?AIN | C FORWARD) =T
C End D | Forward Fast | C '—TL;RN >
v
C__MAN D C End D I Stop |
| Delay 3 |
v
No Run .CW | | Rotate Left Mid |
v
Mem4 = Mem5 Yes | Dela*y 1.5 |
(\[o]® | Run C-:CW | Mem4=0
Y *
C Re;start) C End)
C__cew > C oaw D

NOl«

Run LEFT

Nole

Yes

[RunRIGHT

[\[o] ™

Yes

[Run FORWARD |

Front > Mem3

Yes

[Run RTURN

NOl«
A\ 4

Restart

C D

[RunRIGHT |
Nofe J
Yes

NOJ«

Run LEFT |

[Run FORWARD |
Nole T
Front > Mem3 Yes
[RunLTURN |
Nofe T
A\ 4
C Restart)

100

Challenge 3.3 — AGV between stations

Create the following line with the boxes.

Write a program that moves the SENSE from one station to another along the lines in this order: 1-2-
1-2-...

The Sense stops at each station and moves to the next station when you put your hand close to the
right back sensor.

Hint:

The previous AGV program should answer the movement of the robot.

101

Challenge 3.4 — Along a building block

The following exercises deal with movement methods along walls and around a building block.

Use at least 40 X 40 cm box as a simulation of the building block.

102

3.4.1 Leftand right along walls

The following is the flowchart of a simple movement along walls program.

C PrograinStart) (RIGHT)

v
Turn Right Fast

Mem1=Rangel

Y !
Run l\+/IAIN (End)
(End)

C LEFT D)

v
(M'f‘l N) Turn Left Fast

v
Right front > Mem1 C End)
Run LEFT

No|, T
v

Right front < Mem1

Yes

Run RIGHT
No|,)

\ 4

(Restart)
|

The robot moves by swinging along a wall on its right side.

Place the robot near the box on its right side, read the right front sensor value and set it in the program.
This value may be different from one robot to another.

Download, run and check the robot's movement.

103

3.4.2 Smooth movement along a black line

In order to get a smoother movement we can replace one of the turn instructions with a deviate
instruction. This depends on the robot movement direction.

With the above program, the robot moves clockwise, we shall replace the Left turn command with
Left deviate.

Change the program accordingly, download, run and check to robot movement.

3.4.3 Adding Forward movement

We can use two range values — Crange (close range) and FRange (far range).

The following program drives the robot forward when it is between CRange and FRange.

(Program Start) C RIGHT)
v

v
Mem1=CRange value Turn Right Fast
v v
Mem2=FRange value End
: C D)
Run MAIN
v
C End D) C LEFT D)
v

Turn Left Fast

> R

Run LEFT

. (FORWARD)
v

Forward Fast

Run RIGHT v

(End)

Run FORWARD
No)

A 4

C Restart)

104
Analyze the flowchart.
We have to remember that the right front value increase when the robot come closer to the wall.
Determine the CRange value as the Rangel value of the previous program.
Determine the Frange value as CRange — 10.

Change the program accordingly, download, run and check to robot movement.

105

3.4.4 Along a wall with a stop in front of an obstacle

Improve the previous program to stop in front of an obstacle until the obstacle is removed.

Put a small box in front of the SENSE and check at Direct mode, the front sensor value. We shall

call the read value Obs1.

The following program drives the robot forward when it is on the edge part of the black line.

(Program Start)
v

Mem1=CRange value

v
Mem2=FRange value
v
Mem3=0bs1 value
v
Run MAIN

v
(End)

C MﬁIN D)

C RIGHT D

v

Turn Right Fast

v
(End)

C LEFT D)
v

Turn Left Fast

Right front > Mem2
Run LEFT

v
(End)

(FORWARD)
v

Forward Fast

Run RIGHT

v
(End)
(WAIT)
v

Run FORWARD

Stop

v

Front > Mem3

Yes

Wait until Front < Mem3

v

Run WAIT

Run FORWARD

No

A 4

(Restart)

Analyze the flowchart. Change the program accordingly, download, run and check the robot's

movement.

v
(End)

106

Challenge 3.5 — Along a building block and bypass
cars

Put an obstacle, as described in the following picture.

Write a program, as in challenge 3.4.4, with SENSE bypassing the car. The SENSE should return to
the right only after passing the car.

Hint:
Replace the WAIT procedure with TURN procedure.

The TURN procedure rotate to the left until the front sensor is below the Obs1 value.

107

Challenge 3.6 — Autonomous museum guard

Build a model of a museum with rooms and corridors as follows:

|

START

Create a program that moves the robot along the walls through the museum rooms. The starting point
is at the START position.

Hint:
The program of challenge 3.5 can serve as a solution for this task.

You have to adapt the memory values to the model.

108

Challenge 3.7 — Along a building block with stop
sign

Put black lines at the corners, as described in the following picture.

1

Write a program, as in challenge 3.4, with SENSE stop at the black line for 3 seconds.

Challenge 3.8 — Along a building block with stop
for pedestrian

Put a rod (simulates a pedestrian crossing) at one of the corners, as described in the following picture.

1

p

Write a program, as in challenge 3.4, with SENSE stop at the black line for 3 seconds.
It does not move on if an obstacle is in front of it.

The rod simulates a pedestrian.

109

Challenge 3.9 — Building block guard

Write a program, as in challenge 3.4, with SENSE stop for 10 seconds after each round.
The program has to count the corner turns.
Hint:

The SENSE has two range sensors on each side.

The movement along the wall is according to the front side range sensor.

When the robot is in a corner, the back side sensor moves away from the wall.

The program should check the value of the back side sensor.

When the value is low (the sensor is far from the wall), the robot should call a turn procedure
with increasing the corner number.

= After counting four corners, the robot should stop for 10 seconds and then starts again.

110

Challenge 3.10 — Two buildings guard

S D

S S

Write a program for the SENSE to go around the two buildings as in the above picture. The robot
starts at the road between the two blocks.

The program has to count the corner turns and to change from moving counterclockwise around one
building to clockwise around the other building.

111

Challenge 3.11 — Taxi driver

Put black lines along the building, as described in the following picture.

Write a program that moves the SENSE along the building and stops it on the third black line.

Start with the SENSE on the other side of the building.

112

Challenge 3.12 — Taxi driver with passenger

Put black lines along the building, as described in the following picture.

L1111

IRRNI

Write a program that moves the SENSE along the building and stops on the third black line for 5
seconds.

After that, the robot continues to the other side and stops on the second black line.

113

Challenge 3.13 — Home vacuum cleaner robot

Build a model of a room as follows:

Create a program that moves the robot along the walls in different distances from the walls.

At the first round, the robot will move closer to the walls and at the second round, the robot will move
8cm from the walls.

	Chapter 1 – Control and Robots
	1.1 Robots
	1.2 Control systems
	1.3 SENSE autonomous
	1.4 CARM-202 C coding unit
	1.5 C language
	Experiment 1.1 – Serial Communication
	1.1.1 Classification of communication methods
	1.1.2 Serial asynchronous communication
	1.1.3 ASCII code

	Experiment 1.2 – Communication with SENSE
	1.2.1 Forward and stop
	1.2.2 Forward and backward
	1.2.3 Turning left and right
	1.2.4 Rotating left and right
	1.2.6 Challenge exercises – Moving in a square

	Experiment 1.3 – Interactive Programs
	1.3.1 The SENSE sensors
	1.3.2 Moving towards a wall and stopping
	1.3.3 Printing front sensor values
	1.3.4 SENSE to a wall and stop
	1.3.5 Endless loop
	1.3.6 Challenge exercise – Moving to a wall and back

	Experiment 1.4 – Movement Along a Black Line
	1.4.1 The SENSE bottom sensor
	1.4.2 Moving to a black line and stopping
	1.4.3 Moving along a black line
	1.4.4 Printing sensor values
	1.4.5 SENSE to a black line and stop
	1.4.6 Moving to a black line in an endless loop
	1.4.7 Moving between two black lines
	1.4.8 Challenge exercise – Between a wall and a line (I)
	1.4.9 Moving along a black line
	1.4.10 Moving along a black line and stop
	1.4.11 Challenge exercise – Along a complex black line

	Experiment 1.5 – Movement Along Walls
	1.5.1 Movement along walls
	1.5.2 The SENSE right front sensor
	1.5.3 Moving along walls
	1.5.4 Printing sensor values
	1.5.5 Moving along walls
	1.5.7 Challenge exercises – Moving along walls

	Challenge 1.6 – Counting
	Challenge 1.7 – Automatic movement
	Challenge 1.8 – Loops
	Challenge 1.9 – Loops and procedures
	Challenge 1.10 – "Don't touch me" robot
	Challenge 1.11 – Robots in a convoy
	Challenge 1.12 – Movement in a labyrinth
	Challenge 1.13 – Exiting a circle
	Challenge 1.14 – Moving along corridors

	Chapter 2 – Brain Units
	2.1 Brain units
	2.2 NeuLog sensors as brain units
	Experiment 2.1 – Sound Sensor
	2.1.1 Challenge exercise – Wait for sound

	Experiment 2.2 – Motion Sensor
	2.2.1 Challenge exercise – Moving in a distance range

	Experiment 2.3 – Brain Tracking Unit
	2.3.1 IR Transmitter
	2.3.2 Brain tracking unit
	2.3.3 Challenge exercise – Tracking a robot with IR transmitter

	Experiment 2.4 – Brain Gripper Arm
	2.4.1 Brain gripper arm
	2.4.2 Challenge exercises – The SENSE with gripper arm

	Chapter 3 – Autonomous Vehicle Challenges
	3.1 Autonomous vehicles
	3.2 Programming tips
	Challenge 3.1 – Along black lines
	3.1.1 Left and right along a black line
	3.1.2 Smooth movement along a black line
	3.1.3 Adding Forward movement
	3.1.4 Along a black line with a stop in front of an obstacle

	Challenge 3.2 – Automatic Guided Vehicle (AGV)
	Challenge 3.3 – AGV between stations
	Challenge 3.4 – Along a building block
	3.4.1 Left and right along walls
	3.4.2 Smooth movement along a black line
	3.4.3 Adding Forward movement
	3.4.4 Along a wall with a stop in front of an obstacle

	Challenge 3.5 – Along a building block and bypass cars
	Challenge 3.6 – Autonomous museum guard
	Challenge 3.7 – Along a building block with stop sign
	Challenge 3.8 – Along a building block with stop for pedestrian
	Challenge 3.9 – Building block guard
	Challenge 3.10 – Two buildings guard
	Challenge 3.11 – Taxi driver
	Challenge 3.12 – Taxi driver with passenger
	Challenge 3.13 – Home vacuum cleaner robot

